Ecole normale supérieure de Lyon
Laboratoire de I'Informatique du Parallélisme

Ecole Doctorale Informatique et Mathematiques

Doctorat

Informatique

Benoit BOISSINOT

Towards an SSA based compiler back-end:
some interesting properties of SSA and its
extensions

These dirigée par Fabrice RASTELLO.
Soutenue le 30 septembre 2010.

Jury:

Albert COHEN (Rapporteur)
Anton ERTL (Examinateur)
David MONNIAUX (Rapporteur)
Fabrice RASTELLO (Directeur)

Yves ROBERT (Examinateur)

Contents

1 Introduction

2 Control flow graph, loops, and SSA
2.1 Control flow graph (CFG)
2.1.1 Definitions and properties
2.1.2 Traversal and order of CFG
2.2 Loops
2.2.1 Definition
2.2.2 Minimal connected loop nesting forest
2.3 Joinset
2.4 Static single assignment (SSA) form
2.4.1 Definitionso
2.4.2 Minimal SSA
2.4.3 Liveness and variants of SSA form

3 Liveness analysis under SSA
3.1 Definitions
3.2 Livenessset
3.2.1 Classical liveness set construction
322 Twopassdataflow
3.2.3 One variable at a time
324 Omneuseatatime.
3.3 Livenesscheck
3.4 From reducible CFG to irreducible CFG
3.5 Interference
3.6 Conclusion

11
14
14
15
17
17
17
18
19

4 CONTENTS

4 SSA extensions: SSI 43
4.1 Definitions and motivations 43
4.1.1 Ananian’s definition of SST 43
4.1.2 Singer’s definition of SST 46
4.1.3 Semi-pruned and pruned SSI form 46
4.2 Weak and strong SSI forms 47
4.2.1 Weak and strong SSI forms are not equivalent 48
4.2.2 Properties of variables in weak and strong SSI forms . 49
4.3 The intersection graph is an interval graph 50
4.3.1 Strong SSI form 51
4.3.2 Weak SSI form 55
4.4 Liveness under SSI 60
4.5 Single-entry single-exit region and SSI 61
4.5.1 Single-entry single-exit region 63
4.5.2 Removal of o-functions 65
5 SSA Destruction 69
5.1 Motivations 69
5.2 Clean approach 71
5.2.1 Going out of CSSA: a coalescing problem 75
5.2.2 Overview of the SSA destruction 77
5.2.3 Coalescingo 78
5.2.4 Sequentialization of parallel copies 79
5.2.5 Qualitative experiments 80
5.3 Towards a more efficient algorithm 84
5.3.1 Live-range intersection tests 85
5.3.2 Linear interference test between two congruence classes,
with extension to equalities 85
5.3.3 Virtualization of ¢-nodes 90
5.3.4 Results in terms of speed and memory footprint 91
54 Conclusion 94
6 Conclusion 97
6.1 Liveness 97
6.2 Static Single Information formo 98
6.3 SSA destruction 98

6.4 Perspectives 99

Chapter 1

Introduction

Compilation of programs, that is the transformation of human generated
source code into binary code executable by a processor has always been a very
active topic in computer science. First the goal was to get rid of the burden
of hand-compiling, letting programs themselves take care of this tedious task.
The initial focus was purely on getting a correct translation from textual
source into binary code: an important area of research was lexing (separating
the input into tokens) and parsing (interpreting the tokens). The automation
brought by the compilers can be used to optimize programs too: detecting
non-optimal structure, removing unneeded code and in general generating
the best possible assembly for a given source code.

One of the recent trend in the compiler community is the area of virtualiza-
tion. Virtualizing the program, for example by using a machine-independent
bytecode to represent the compiled program, helps in several areas: portability
between architectures, security, productivity, ... While this process has been
used for a long time in the desktop and server computing field, it has only
since recently been brought forward on embedded platforms. Indeed, the
diversity of the architectures is a nightmare when it comes to distributing the
executable, shipping a single binary that is compiled on the host processor
(ahead-of-time or just-in-time compilation) helps solve this problem. But as
the host processor has limited resources, we need to design compiler algo-
rithms which aggressively optimize but still run relatively fast and consume
little memory.

Our goal is to split the compilation process, a first architecture-independent
pass compiles the source code into bytecode, optimizing as much as possible.
A second pass, on the host processor, then compiles the bytecode down to the

6 CHAPTER 1. INTRODUCTION

instructions available for the specific architecture. This second pass is severely
constrained by the computing power available on the embedded platform, this
is the part our thesis improves by bringing new fast algorithms for crucial
parts of the compiling process.

All along this process, several intermediate representation of the code can
be used. One of them is the Static Single Assignment (SSA) form, which
facilitates some optimizations or analyses.

Under the SSA form, the program is transformed into a semantically equiv-
alent program where every variable is defined only once textually. Currently,
the majority of compilers use the SSA form: LLVM, GCC, Open64, ...

Our work in this thesis is articulated around three contributions.

In the first chapter, we define the ground material used in the thesis. First
we define the data structure used to represent the program, the control flow
graph, furthermore we describe some useful graph properties. Then, in the
context of control flow graphs, we give the definition of loops, one of the most
essential structure of a computer program. Finally we define the SSA form,
which is the intermediate representation at the center of this thesis.

When compiling on a resource-constrained platform, the compiling process
is simplified as much as possible. Liveness analysis then becomes one of the
costliest analyses found during code generation. The second chapter presents
our fast algorithm for the liveness analysis suitable for programs in SSA
form. We present several approaches, some based on path exploration, and
our approach based on the structure of the loops. Since our algorithm only
exploits the shape of the control flow graph, it does not require any complex
re-computation after small modifications of the program (for example due to
an optimization).

We then present a variant of the SSA form, the Static Single Information
(SSI) form. In a first part, we clarify the various definitions found in the
literature, and show the differences between them. Then we prove that the
intersection graph of the live-ranges of variables under SSI form is an interval
graph. Additionally we exhibit an order of the control flow graph such that
every live-range is an interval of the program.

Our last contribution is a clean way to go out of the SSA form. The SSA
form introduces ¢-functions which do not map into generated code. In order
to produce machine code, those special instructions need to be removed, by
introducing new copies, as few as possible. We present a clean process for
this transformation, clearly separating the different phases of the algorithm:
first the introduction of new copies in order to reach a variant of the SSA

form where the ¢-functions can be naturally removed, and then minimize the
number of copies, while keeping the code under this SSA form variant. This
approach allows us to get a provably correct transformation, contrary to some
of the previous approaches. Furthermore, while simpler to implement, our
approach can achieve results comparable to some of the complex previous
techniques.

CHAPTER 1. INTRODUCTION

Chapter 2

Control flow graph, loops, and
SSA

Throughout this thesis, we will use different concepts and properties. In this
chapter, we lay out the groundwork needed for our contributions. We first
describe the internal representation of the compiler we will manipulate all
along, a graph based representation of the program: the control flow graph.
Based on this representation, we define several graph relations: dominance
and post-dominance, additionally we state several useful theorems related
to those relations. In the context of the control flow graph, we then give a
general definition of loops, later on we define our own more specific definition
that will prove useful in the following chapters. Finally, we define the static
single assignment form, a commonly used intermediate representation.

Since we only define the structures and properties which are useful for
this thesis, the interested reader can find an in-depth introduction to this
topics in most compiler textbooks. In particular, we recommend the Modern
Compiler Implementation books [3] by A. Appel and J. Palsberg.

2.1 Control flow graph (CFG)

2.1.1 Definitions and properties
Control-flow graph

A procedure is represented as a control-flow graph (CFG), which is a
directed graph G = (V, E, r,t), with set of nodes V', set of edges F, and two

9

10 CHAPTER 2. CONTROL FLOW GRAPH, LOOPS, AND SSA

specific nodes r and ¢: r is the entry node, with no incoming edge, and ¢ is
the exit node, with no outgoing edge.

A path P of length k£ > 0 from a node u to a node v in V' is a non-empty
sequence (vg, vy, ...,vx) of nodes such that u = vy, v = vg, and (v;_1,v;) € E
for i € [1..k]. With this definition, a path of length 0 is a path with one node
and no edge. If the CFG contains a self-edge, i.e., an edge of the form (u,u),
then there is also a path of length 1 from u to itself. Node v is reachable
from w if there is a path from u to v in the CFG. A node u part of a path P,
will be denoted u € P. Our notion of reachability is purely static and only
depends on the shape of the control flow graph, it does not take into account
the execution of the program: even if a node is reachable from the start of the
program, it does not mean there exists an input where the node is executed.

Using this purely static definition of reachability, we assume that every
node is reachable from r, this means that unreachable basic blocks have
been pruned from the program. Every time the post-dominance property, as
defined below, will be used, we will assume that every basic block can reach
the exit of the procedure. This is not always the case, for example "noreturn”
procedures, which contain an infinite loop, do not fulfill this property. But,
in order to fulfill this property, we can always add artificial edges to the CFG,
even if in practice they will not be traversed during the execution.

Usually, each node in the CFG represents a basic block, i.e., a sequence
of successive instructions in the program with no branches or branch targets
interleaved. In order to simplify definitions and proofs, we will sometimes
assume that every node consists of a single instruction.

Dominance and post-dominance property

A node u in a CFG dominates a node v, denoted v dom v, if every path
from the entry node r to v contains u. If v dom v and u # v, then u strictly
dominates v, denoted u sdom v. The node u is the immediate dominator
of v, denoted idom(v), if w sdom v and there exists no node w such that
u sdom w and w sdom v. Every CFG node other than r has a unique
immediate dominator. The directed graph whose nodes are the nodes of the
CFG and in which each node other than r is pointed to by its immediate
dominator is a tree rooted at r, called the dominator tree. The dominance
frontier of a set of nodes S, denoted DF(S) is the set of nodes v such that
there exists u € S, u does not strictly dominate v but dominates a predecessor
of v. Figure 2.1 provides an example for the dominance frontier of a node

2.1. CONTROL FLOW GRAPH (CFG) 11

Figure 2.1: Node 2 dominates node 4, but 4 does not strictly dominates one
of its successor: 6. Hence 6 is in the dominance frontier of 2. Similarly 5 is in
the dominance frontier of 2.

in a simple directed graph. Less formally, for a given node u, this is the set
of nodes where u stops dominating other nodes. The iterated dominance
frontier is the limit of the following sequence:

DF,(S) = DF(S)

DF;1(5) = DE(SU DFy(S))

The post-dominance relationship is defined similarly in a CFG. A node v
post-dominates a node u, denoted v pdom u, if every path from wu to the
exit node t contains v. The strict post-dominance (v spdom u), the im-
mediate post-dominator (ipdom(u)), the post-dominator tree rooted
at t, and the post-dominance frontier are defined analogously. Notice that
the post-dominance information is equivalent to the dominance information
if the direction of every edge of the CFG is reversed.

Figure 4.3 provides an example of a control-flow graph, and its dominator
and post-dominator trees.

2.1.2 Traversal and order of CFG

Many algorithms are based on particular walk of a control flow graph, the
depth first search. Starting at the root node, every children is recursively
visited in the following way:

12 CHAPTER 2. CONTROL FLOW GRAPH, LOOPS, AND SSA

Algorithm 1 Depth-first search of a control flow graph.
: function DFSEARCH(CFG (V, E, 1))
for each n € V do
State(n) < unvisited
DFS(r)
: function DFS(node n)
State(n) < visited
for each s € succ(n) do
if State(s) = unvisited then
DFS(s)
State(n) < finished

1

@

During the walk every node can be in several states:
e unvisited, when the node has not yet been visited,

e processing, DFS(n) has been called but the recursive call did not return
yet

e finished, DFS(n) has been called and returned, all of n children have
been processed

From those state transition we can define an ordering of the control flow
graph nodes. Before every call to the DFS function, we increment a global
counter, the preorder number of a node will be the time when DFS(n) is called,
and (transition from unvisited to processing), and the postorder of a node
will be the time when DFS(n) returns (transition from visited to finished).

Those order have some classic properties:

e the preorder number of a node is always smaller than its postorder;

e in an acyclic graph, the reverse postorder of a graph is a topological
order (that is the source of an edge always has a greater postorder
number than the target);

e for every node, if its preorder number is included between the preorder
and the postorder number of another, then it is a descendant in the
spanning tree as defined below.

2.1. CONTROL FLOW GRAPH (CFG) 13

A DFS walk of the control flow graph defines a spanning tree of the control
flow graph, if we only keep the edges which are followed. From this spanning
tree, we can classify the edges in three categories:

e tree edge, going from a node in the spanning tree, to one of its successor
in the spanning tree,

e forward edge, going from a node in the spanning tree, to one of its
descendant in the spanning tree,

e cross edge, going from a node in the spanning tree, to another branch,
e back-edge, from a node to one of its ancestor in the spanning tree.

The graph obtained by removing the back-edges from a control flow graph
is an acyclic graph. Furthermore, as we will see later, those back-edges play
a role in loop structure.

Adding the preorder and postorder numbering to the DFS algorithm yields
algorithm 2.

Algorithm 2 Depth first search walk, numbering nodes with pre- and pos-
torder numbering

1: function DFSEARCH(CFG (V, E,r))

2: time < 0

3: for each n € V do

4: State(n) < unvisited

ot DFS(T)

6: function DFS(node n)

7. pren| < time

8: time < time + 1

9: State(n) < visited

10: for each s € succ(n) do

11: if State(s) = unvisited then
12: Add arc (n, s) to the spanning tree
13: DFS(s)

14: post[n] < time

14 CHAPTER 2. CONTROL FLOW GRAPH, LOOPS, AND SSA

2.2 Loops

Intuitively, a cycle in the control flow graph represents a loop, a sequence of
instructions which can be repeated during the execution of the program.

2.2.1 Definition

A control flow graph can be more or less structured, for example the use of
goto in the source language can create arbitrary control flow, while if only if,
for or while are used to drive the control flow of the program, the resulting
control flow graph is more structured. More precisely, a set of nodes X is
said to be strongly connected if there exists a path, with only nodes from X,
between any two nodes from X. A more formal definition of structured is
that a control flow graph is said to be reducible if every strongly connected
component possess a node that dominates every node from the component.

While the definition for loops in reducible control flow graphs is unique
among the literature (since we can uniquely identify the entry of the loop),
multiple definitions have been proposed to define loops in non-reducible
CFGs. Ramalingam in [27] presents a definition for loops which generalizes
the previous definitions of loops in the non-reducible case. We will present
and use this more general definition.

A loop, denoted (B, H), consists of a strongly connected component: the
loop body B, and a non-empty set of distinguished nodes from the body: the
headers H. The loop will need to satisfy other properties, the first is the
nesting property, two loops from a program should either be disjoint or be
nested. This allows us to define relations between loops, every nested loop
have a unique parents, and the set of loops from the program form a forest.
For the header of the loop, if the loop is reducible (intuitively, if there is a
unique entry node for the loop), all definitions agree: there is a unique header,
the entry node. In other cases, different choices are possible, Ramalingam
proposes a definition that covers all previously proposed possibilities.

Let Entries(X), denote the entry nodes from X, that is the nodes from
X which have at least one predecessor not in X. And let UnDominated(X),
denote the set of nodes from X, such that no node from X strictly dominates
them. Obviously Entries(X) C UnDominated(X). In general, the headers
will be picked among the un-dominated nodes from the loop body. For reasons
which will become clearer in 2.2.2, if instead of picking the headers from
UnDominated, they are chosen out of Entries, we will say that the loop

2.2. LOOPS 15

forest is connected.

The set of loops we choose must cover every possible strongly connected
component from the graph. First we define the notion of cover: a loop (B, H)
covers a set of nodes X, iff X € B and BN H # (). We then add the following
requirement: decomposition of a CFG in loops, for every strongly connect
component of the CFG, there exists a loop that covers it.

Ramalingam [27] gives a constructive proof of existence of minimal loop
forest, which holds as long as the function used to select the headers from a
strongly connected component satisfies the property that the sets are non-
empty, and are a subset of UnDominated. The construction works in the
following way: each step of the decomposition computes a set of SCCs, which
form a new level of loops in the loop nesting forest. From this loops, headers
are chosen according to the cover and Undominated property. Then, for each
such loop L, the loop-edges, i.e., the edges from a node in L to a loop-header
of L, are removed. This process iterates until no strongly component is left.

Since for every strongly connected component, Entries C UnDominated
and Entries # (), a connected loop forest is also a valid loop forest.

We previously defined the back-edge, in term of a spanning tree (implied
by a depth-first search) of a control flow graph. Given a set of loops, we
define loop-edges as the set of edges (a, b), such that there exists a loop (B, H)
with @ € B and b € H, in other words, an edge from a node in the loop to
one of its header. Obviously, for reducible graphs, back-edges and loop-edges
designate the same thing. But for non-reducible graphs they can be different.

A minimal loop nesting forest is a loop nesting forest such that no loop
body from the forest is covered by another loop. Such loop nesting forests
holds interesting properties, for example every two sets of headers are disjoint
(a node can only be a header of one loop).

Figure 4.4 provides an example of a control-flow graph and its loop nesting
forest.

2.2.2 Minimal connected loop nesting forest

In a minimal loop nesting forest denoted by L, let F,(G) be the graph
obtained after removing all loop-edges from G. As proved in [27, Theorem 2],
this graph is acyclic. We will sometimes call this graph the reduced graph of
G. It has a topological order that respects the nesting of loops, which means
that all nodes of a given loop can be visited before visiting any other disjoint
loop [27, Theorem 4]. To see this, we can order the nodes of the loop-tree

16 CHAPTER 2. CONTROL FLOW GRAPH, LOOPS, AND SSA

during its construction: at each level of the decomposition, the children of
a loop are sorted according to a topological order of the DAG obtained by
removing all loop-edges and considering each resulting strongly connected
component (SCC) as a single node.

Furthermore, a topological order of F(G) respects the dominance relation
if it is connected, i.e., if there is a path from the root r to any other node wu.
Indeed, if v dominates u, then any path from r to u contains v. Since the
graph is connected, at least such a path exists and v is processed before u
in any topological order. In theorem 1, we show that this occurs when loop
headers are entry nodes, i.e., when the minimal loop forest is connected as
defined previously. Additionally, we prove the existence of such a loop nesting
forest.

Theorem 1. Consider a CFG with root r from which there is a path to any
other node, and r is not part of any strongly connected component. Then,
there exists a minimal connected loop forest L, and for every such loop forest
there is a path from r to any other node in Fp(G).

Proof. Let us recall the construction of a loop nesting forest: each step of
the decomposition computes a set of SCCs, which form new loops in the loop
nesting forest. Then, for each such loop L, the loop-edges, i.e., the edges from
a node in L to a loop-header of L, are removed. By induction, we prove that
there still exists a path from r, the CFG entry node, to any other node in
the CFG after the removal of these edges. For the basis, observe that each
CFG node is reachable from r in the initial CFG, prior to the identification
of the first set of loops.

Then, let L be a loop in the nesting forest. Let G’ and G” denote the
CFG before and after the removal of the loop edges of L. By the induction
hypothesis, all nodes are reachable, in G’, from r. As r ¢ L, there exists
at least one entry node of L, i.e., a node in L with an incoming edge from
outside of L. Therefore, it is always possible to select a set of loop-headers
that are also entry nodes of L, and the decomposition can continue.

Note that any path ending at an entry node u for L and whose previous
node v in the path is not in L cannot contain a node in L, except u, otherwise v
would also belong to the SCC L. Thus, in G/, there is a path from r to any
entry node u of L that does not contain any node in L except u. None of the
edges along this path are loop-edges of L, so this path remains present in
G". On the other hand, if u is not an entry node of L, consider a path, in G’,
from r to u. Let v be the last (if any) entry node of L in P. The sub-path

2.3. JOIN SET 17

from v to u does not contain any loop-edges for L and v remains reachable
from r in G”. Therefore, concatenating these two paths ensures that a path
from r to u exists in G”.]

2.3 Join set

Given a set of nodes S, let J(S) be the set of nodes x such that there exists
y € 5, and z € S, with a non-empty path from y to x and a non-empty path
from z to z, disjoint except for x. Let us define the iterated join set (JT(5))
to be the limit of the following sequence:

Michael Wolfe, in [33], extended the results of Michael Weiss [32], and
proved the general equivalence between the joint set and the iterated join
sets.

Theorem 2. For any set of nodes S, J(S) = J*(S5).

Additionally, Cytron et al. [18] implicitly provide the following theorem on
the equivalence of join-sets and the iterated dominance frontier. An explicit
version can be found in the work of Michael Weiss [32].

Theorem 3. For any set of nodes S containing the entry, J*(S) = DF*(S).

2.4 Static single assignment (SSA) form

2.4.1 Definitions

The static single assignment (SSA) form was first presented in two papers
in POPL’88, focusing on the identification and elimination of redundant
computations [1, 12]. Those papers were followed by a journal paper [18]
presenting more thoroughly the foundations of the SSA form as well as various
construction algorithms.

The main concept behind the SSA form is that every variable satisfies
the single definition property. This means that every variable is only being
assigned once, textually. The property cannot be achieved with only the

18 CHAPTER 2. CONTROL FLOW GRAPH, LOOPS, AND SSA

help of renaming, that is choosing a different name for every definition of a
variable and renaming every use appropriately. In some cases, two distinct
definition reach the same use, depending on the actual execution. To solve
this issue, SSA form introduce a new concept, the ¢-functions.

A ¢-function can only be inserted at the start of a basic block, and is
usually inserted at a join point. It has the same number of arguments as
the join point has incoming edges. Every ¢-functions of a basic block are
executed concurrently, the value returned by the function depends on the
execution flow. We suppose the incoming edges are ordered, if the instruction
is reached via the i-th incoming, then the ¢-function returns the value of
its ¢-th argument. Another way to view the operation is to imagine copies
happening on the edges, the variable at the left-hand side will have as many
potential definitions as there are incoming edges, ¢-functions have the same
semantics but allow to have the single definition property.

In most cases, to simplify liveness and dominance under SSA, instead of
considering that the use associated with a ¢-function happens on the edge,
we can assume it is located at the end of the associated predecessor block.

2.4.2 Minimal SSA

We only defined a property that must be satisfied for a program to be in
SSA form and a new instruction allowing us to properly transform a program
into SSA form. We now describe how to actually transform a program into
SSA form. The textbook algorithm works in two different phases: first, the
points where ¢-functions have to be inserted are computed, then, variables are
renamed in order to satisfy the single definition property. For the placement
of ¢-functions, the journal paper of Cytron et al. [18] uses the notion of join
points: for a given variable v, ¢-functions are inserted at the iterated join set
Jt(D) where D is the set of program points where v is defined. It is easier
to compute the iterated dominance frontier (DF*) than the join sets. Since
DF*(S) = J(S) if S includes the root of the CFG, the algorithm from
Cytron et al. adds a pseudo definition of v at the root of the control flow
graph to ensure the root node is always included in the set of definitions, this
lets them use the iterated dominance frontier instead of the join sets. After
inserting the necessary ¢-functions, but before renaming the variable, we
can minimize the number of inserted ¢-functions such that every use is only

reachable from one definition, the resulting SSA form is called the minimal
SSA form.

2.4. STATIC SINGLE ASSIGNMENT (SSA) FORM 19

X< ... X< ...
X< ... X< ... \ /
\ / X — O(x,x)
Z<— Xty z +— x+y
(a) Non-SSA program (b) With single reaching defini-

tions

X4 X2<—...

N/
X3 ¢ (%1, %)
Z < X3ty

(c¢) SSA program after renaming

Figure 2.2: Placement of ¢-functions

2.4.3 Liveness and variants of SSA form

The minimal SSA form may insert ¢-functions and create new variables at
merge points where a variable is not live in the original code. Those additional
useless variables could increase the runtime of some analysis or optimizations.
To avoid this problem, two SSA variants have been introduced: semi-pruned
and pruned SSA form.

Many variables are local: they are only used within the basic block where
they are defined. The semi-pruned SSA does not create any ¢-function for
those block-local variables.

The pruned SSA is more precise, with the help of a liveness analysis,
it avoids creating ¢-functions if a given variable is not live in the original
program. This pruning can be done directly while transforming the program
into SSA form, or start from a program in semi-pruned form and prune the
dead (useless) ¢-functions.

20 CHAPTER 2. CONTROL FLOW GRAPH, LOOPS, AND SSA

Chapter 3

Liveness analysis under SSA

Liveness analysis provides information about the points in a program where a
variable holds a value that might still be needed. Thus, liveness information
is necessary for most optimizations passes related to storage assignment. For
instance optimizations like software pipelining, trace scheduling, and register-
sensitive redundancy elimination make use of liveness information. In the
code generation part, particularly for register allocation, liveness information
is mandatory.

Traditionally, liveness information has been computed with data-flow
analysis techniques (e.g. see [16]). But they have major drawbacks since
the computation is fairly expensive (several iterations are needed) and the
results are easily invalidated by program transformations. Indeed, adding
instructions or introducing new variables requires suitable changes in the
liveness information: partial re-computation or degradation of its precision.
Furthermore one cannot easily limit the data-flow algorithms to compute
information only for parts of a procedure. Computing a variable’s liveness at
a program location generally implies computing its liveness at other locations,
too.

In this chapter we describe alternatives algorithms for computing the
liveness information. We present our novel algorithm, based on the loop
structure of the graph, which builds the liveness information in two-passes:
one backward in the control flow graph, and one forward in an order derived
from the loop structure. Then we present simpler algorithms solely based
on the exploration of paths. Finally we solve a more complex problem:
interference between variables. As we will show, this problem not only
involves the liveness information related to the variables, but their actual

21

22 CHAPTER 3. LIVENESS ANALYSIS UNDER SSA

value as well.

3.1 Definitions

A variable is live at some CFG node if both:

1. its value is available at this node. This can be expressed as the existence
of a reaching definition, i.e. existence of a directed path from a definition
to this node.

2. its value might be used in the future. This can be expressed as the
existence of an upward exposed use, i.e. existence of a directed path
from this node to a use that does not contain any definition of this
variable.

In fact, the reaching definition constraint is useful only for non-strict
programs. A strict program is a program such that every path from start
node to a use of a variable contains the definition of the variable. An upward
exposed use at the entry of the CFG, is a potential bug in the program,
even if the dynamic execution could be safe, for example if every executed
path defines the variable before any use as in figure 3.1. In that case the
compiler usually dumps a warning message (use of a potentially undefined
variable). From now on, we will assume the program to be in strict SSA
form, the definition of a variable dominates all its uses (dominance property).
To simplify some definitions and proofs, we sometimes consider that every
CFG node consists of a single instruction. Liveness can then be defined as
follows:

Definition 1. A wvariable a is live-in at a node q if there exists a directed
path from q to a node u where a is used and that path does not contain the
definition of a, denoted as def,.

Definition 2. A wvariable a is live-out at a node q if it is live-in at least at
one successor of q.

3.2 Liveness set

Sometimes instead of computing the program points where a variable is live,
it is sufficient to compute the set of live variable only at some particular

3.2. LIVENESS SET 23

B (cond Bl, BQ

—

B (cond, By, Bs)

7

Figure 3.1: There exists a path from By to B4 that does not contain any
definition of x. But the program is still correct since, because they are guarded
by the same condition cond, B, is only executed only if B; is executed as
well, and x is never used before being defined.

24 CHAPTER 3. LIVENESS ANALYSIS UNDER SSA

program point. Typically, live sets are computed at basic blocks boundaries,
since the lack of control flow inside basic blocks allows to recompute the
precise liveness information easily. We call this analysis the computation of
live-in and live-out sets.

3.2.1 Classical liveness set construction

We defined liveness in term of the existence of paths, that is a relation between
a node and its successors. Since liveness information evolves around paths,
the traditional approach has been to describe the problem using data-flow
equations. Indeed, the live-in and live-out definitions are easily mapped into
a set of data-flow equations.

We assume we are under strict SSA Form, thus every variable has a unique
definition which dominates all its uses. Let us note Killing(B) the set of
variables which are defined in the basic block B, and UpwardExposed(B) the
set of variable that are used in the basic block and are defined in another basic
block. Intuitively, we consider a basic block as a huge instruction, defining
some variables (Killing) and using other variables (UpwardExposed), while
any local variable that does not escape the basic block is omitted. We can
then simply map the definitions to the following equations:

LiveIn(B) = UpwardExposed(B) U (LiveOut(B) — Killing(B))
LiveOut(B) = Usesuces(p)Liveln(S)

Those equations translate to the data-flow algorithm found in algorithm 3.

As with all data-flow analysis, the order in which the CFG nodes are
processed is crucial. If the graph was acyclic, ordering the nodes such that
every node is processed after all its successors are processed would avoid
doing any iteration. An example of such an order is the postorder of a graph.
In practice even if most control flow graphs have loops, thus the postorder
will not make the information flow everywhere in one pass, but it will still
propagate quite far, that is the reason why the chosen order is usually the
postorder.

But even using the postorder, the number of iterations depends on the
loop depth. For example in Figure 3.2, we have four loops: ({2},{2,3,4,5,6}),

3.2. LIVENESS SET 25

Algorithm 3 Classical liveness algorithm using data flow
function LIVENESS_DATAFLOW(CFG (V, E))
for each B € V do
Liveln(B) < UpwardExposed(B)
LiveOut(B) «+ 0

1:
2
3
4
5: changed < true
6
7
8
9

while changed do
changed <+ false
for each B € V, in postorder do
: new LiveOut < Ugeguces(pyLiveln(B)
10: if newLiveOut # LiveOut(B) then

11: LiveOut(B) < new LiveOut
12: changed < true

ae... (1)
—a (2

Figure 3.2: A control flow graph where the classical liveness algorithm using
backwards data-flow will iterate as many times as the loop depths, when
using the postorder to drive the data-flow. At each iteration, the variable a
will be marked as live in one more basic block below the only use.

26 CHAPTER 3. LIVENESS ANALYSIS UNDER SSA

({3},{3,4,5,6}), ({4},{4,5,6}) and ({5},{5,6}). After each iteration, the
information will reach one more loop starting from the outermost one.

We can note that, in the case of forward data-flow, Cooper [17] advocate
for the use of a reverse postorder of the control flow graph. For backward-data
flow algorithm, most authors [3] simply assume it is the same type of problems
with the edges reversed and thus use the reverse postorder of the control flow
graph with all edges reversed. But we do not see any compelling reason to
choose this order over a simpler postorder of the control flow graph.

Kam et al. [24] explored the complexity of round-robin data-flow algo-
rithms, that is algorithms that iterate over a fixed order until there are no
new changes. They show that for forward data-flow problems, if the graph is
reducible, there will be at most d(G) + 3 passes over the set of nodes, where
d(Q) is the depth of the most nested loop. To apply this complexity analysis
to backwards data-flow problems, the reverse control flow graph needs to
be reducible. However while most control flow graph are reducible, it is not
true from a typical reverse control flow graph: many programming languages
offer a way to break out of a loop from multiple locations. Furthermore some
compiler have passes to transform every loop of a control flow graph into
a natural loop, but those passes are usually not applicable for the reverse
control flow graph. It is an open conjecture to know if the bound proved
by Kam et al. [24] is valid for backwards data-flow with postorder. If that
conjecture was proven, it would remove any incentive to use the reverse
postorder of the reverse graph for round-robin algorithms solving backward
data-flow problems.

3.2.2 Two pass data flow

As we have seen with the classical data-flow algorithm, the algorithm needs
to iterate in order to propagate the information across loops. With the help
of SSA properties, and using the loop structure, can we do better?

The use of SSA properties, single definition and dominance, allows to
compute the liveness information in two passes. We show the result first for
reducible graphs, and will generalize to non-reducible graphs later on. First,
a backward pass propagates the liveness information upwards to the loop
headers. Then a second pass propagates the liveness from the header of the
loops to their bodies.

The first past consists on a propagation of the liveness, in a way similar to
a single pass of a round-robin data-flow algorithm, using a reverse topological

3.2. LIVENESS SET 27

order of the acyclic graph where the loop-edges are removed (the reduced
graph, F,(G)). The second pass descends into the loop tree, propagating the
liveness from headers to the loop body for each loop.

We first show that the backward pass on a reverse topological order of
the reduced graph correctly propagates the information to the loop headers.

Lemma 1. In a reducible CFG, given a variable v and its definition d, for
every maximal loop L with header h such that L does not contain d, v is
live-in at h iff there is a path in F:(G), the reduced graph, from h to a use
not containing d.

Proof. Given a variable v defined in d, and a maximal loop L with header
h not containing d. If v is live at h, there exists a cycle-free path from h to
a use of v in the CFG, which does not go through d. Take this path and
suppose there is a loop-edge (s, ') in this path, i’ being the header of a loop
L', and s € L'. b/ # h otherwise the path would contain a cycle, this means
L#L.

e h € I is not possible, since L was the biggest loop not containing d, it
would imply d € L' and h would dominate d which contradicts the fact
that v is live-in at h.

e h & L/ since the graph is reducible, the only way to enter L’ is through
k', and it would mean there was a previous occurrence of A’ in the path,
this breaks our hypothesis that the path is cycle-free.

Thus the path does not contain any loop-edges, and it is a valid path from
the acyclic graph. Conversely, if there exists a path in the acyclic graph, then
v is live-in at h, since the acyclic graph is a subgraph of the CFG. [

In the previous lemma, it is not guaranteed there exists a loop L satisfying
the conditions. The following lemma covers this case:

Lemma 2. In a reducible CFG, given a variable v and its definition d, for
every program point p such that no loop contains p but not d, v is live-in at p
iff there is a path in the reduced graph Fp(G) from p to a use not containing
d.

Proof. Given a variable v defined in d, and a program point p such that v is
live at p and no loop contains p but not d. Since v is live at p, there exists a
cycle-free path from p to a use of v in the CFG, that does not go through d.

28 CHAPTER 3. LIVENESS ANALYSIS UNDER SSA

Take this path and suppose there is a loop-edge (s, k) in this path, h being
the header of a loop L, and s € L:

e p € L is not possible, since it would imply d € L and h would dominate
d.

e p & L, since the graph is reducible, the only way to enter L is through
h, and it would mean there was a previous occurrence of h in the path,
this breaks our hypothesis that the path is cycle-free.

We built a path which does not contain any loop-edges, thus a valid path
from the acyclic graph. Conversely, if there exists a path in the acyclic graph,
then v is live-in at p, since the acyclic graph is a subgraph of the CFG. [

Those two lemmas prove that if we propagate the liveness information
only along the edges of F.(G), the acyclic reduced graph, then for a variable
v, every program point that is either not part of a loop not containing d, or is
the header of the biggest loop not containing d, will have v marked as live-in.

Furthermore, the first lemma proves that if after the first pass (the
backwards propagation along the reduced graph) a program point’s live-in
is not accurate, then the missing variable is already in the live-in set of the
header of one of the surrounding loops. We now prove that every variable
live-in at the header of the loop should also be live-in at every program point
of the loop body.

Lemma 3. If a variable v is live-in at a header of a loop, then v is live-in at
each node from the body of the loop,

Proof. Given a loop L with header h, such that the variable v defined at
d is live-in at the loop (it is live-in at h). Since it is live at h, because of
the dominance property, h is strictly dominated by d, this mean d is not
contained in L. Furthermore there exists a path from A to a use of v which
does not go through d. For every node of the loop, p, since the loop is a
strongly connected component of the CFG, there exists a path, consisting
only of nodes from L from p to h. Concatenating those two paths proves that
v is live-in and live-out of p. m

This lemma proves the correctness of the second pass, which propagates
the liveness information inside loops. Lemma 1 proved that every program
point which did not have a correct liveness information will be marked after

3.2. LIVENESS SET 29

the second pass, this lemma proves that every program point marked by the
pass is indeed live-in. Overall, this proves the correctness of our algorithm.

While a round-robin data-flow algorithm can, in the worst-case, do as
many iteration as the depth of the loop nesting forest, with our loop-based
algorithm, the first pass will update the header of the outermost loop, while
the second pass will directly update every node part of the loop, including
the bottom. No iteration is needed. That is the case in Figure 3.2: the first
pass will update the liveness information for the outermost loop header (2),
and the second pass will update all its descendants in the loop-nesting forest
(3,4, 5,6).

In the following algorithms (algorithms 4, 5, and 6), we define PhiDefs(B)
as the set of variables defined by a ¢-functionat the entry of B and PhiUses(B)
as the set of variables used as operand in a basic block successor of B.

Algorithm 4 First pass of the loop-based liveness analysis.
function DAG_DFS(block B)
: for each S € CFG_succs(B) such that (B, .S) is not a loop-edge do
if S not processed then DAG_DFS(S)

1:
2
3
4: Live <— PhiUses(B)

5: for each S € CFG_succs(B) such that (B,.S) is not a loop-edge do
6 LiveU <« Liveln(S) — PhiDefs(.5)

7 LiveOut(B) < Live

8 for each program point p in B, backward do

9 remove killing definition at p from Live

10: add uses at p in Live
11: Liveln(B) < Live U PhiDefs(B)
12: mark B as processed

3.2.3 Omne variable at a time

Instead of computing the liveness globally, for every variables at the same
time, we can update the liveness sets variable per variable.

For a given variable, if the def-use chains (a pointer from every use to the
instruction that defines the variable) are available, a simple algorithm can be
used to build the live-sets. Starting at the uses, the algorithm follows every
edges backwards and stops when visiting the block containing the definition.

30 CHAPTER 3. LIVENESS ANALYSIS UNDER SSA

Algorithm 5 Second pass of the loop-based liveness analysis.
1: function LooPTREE_DFS(block B)
2 if C not a loop header then
3: return

4: for each C' € loopTree_children(B) do

)

6

7

Liveln(C)U < Liveln(B) — PhiDefs(B)
LiveOut(C')U < Liveln(B) — PhiDefs(B)
LoopTREE_DFS(C)

Algorithm 6 Loop-based liveness analysis
1: function CoMPUTE_LIVESETS_SSA _REDUCIBLE(CFG)
2 for each basic block B do
3: unmark B
4: Let R be the root of the CFG
5
6

DAG_DFS(R)
LoorPTREE_DFS(R)

The variable is live on every visited edge. From that we deduce the live-in
and live-out sets of the basic blocks we visit.

While this technique is not specific to the SSA form, it is more convenient
to use it for variables in SSA Form: def-use chains are easily computed
from the use-def chains (which are a by-product of the SSA form, every use
is associated with a unique definition) and they can be kept around and
maintained as long as the SSA form is used. With this algorithm, every basic
block will be visited once for every variable either live-in or live-out.

The principle of algorithm 7 is similar to the algorithm used by Appel to
construct the interference graph in [3].

3.2.4 One use at a time

If the def-use chains are not available, the live sets can still be built in an
efficient manner, in a way that is not SSA specific, as shown by algorithm 8.
First, collect all the definitions for every variable. Then, process every basic-
block of the CFG. For each basic block, process each instruction from bottom
to top, and collect the local live-in sets (the variables with a use in the basic
block, which are not preceded by a definition). After the local live-in sets
is computed, for every variable in this set, we visit every ancestor from the

3.2. LIVENESS SET 31

Algorithm 7 Liveness analysis based on building the live-range of every
variable one after the other.
1: function LIVENESS(variable v)

2: Seen + ()

3: Visit < H

4: D <+ basicBlock(d)

5: for each u € uses(v) do

6: U < basicBlock(u)

7: if U # D then

8: Visit.append(U)

9: while Visit is not empty do
10: C' <+ Visit.pop()

11: if C' € Seen then

12: continue

13: Seen.add(C')

14: LiveIn(C').add(v)

15: for cach B € predecessor(C) do
16: LiveOut(B).add(v)
17: if B € Seen then

18: continue

19: LiveOut(U).add(v)
20: if B # D then

21: Visit.append(B)

32 CHAPTER 3. LIVENESS ANALYSIS UNDER SSA

flow graph, marking the variable as live-in until a basic block containing a
definition is reached.

Algorithm 8 Liveness analysis based on building the live-range of every
variable. Def-use chains are computed on demand.

1: function LIVENESS(CFG)

2: for each basicBlock B in postorder do

3: Live < LiveOut(B)

4: for each instruction i in reverse order of B do
5: for each v used in i do

6: Live.add(v)

7 for each v defined in 1 do

8: Live.remove(v)

9: for each variable v in Live do

10: if v € LiveIn(B) then

11: continue

12: Seen +)
13: Visit + [B]

14: D <« basicBlock(def(v))

15: while Visit is not empty do
16: C' < Visit.pop()

17: if v € liveOut(C) then

18: continue

19: LiveIn(C).add(v)
20: for each P € predecessor(C) do
21: if v € liveOut(P) then
22: continue
23: LiveOut(P).add(v)
24: if P % D then
25: Visit.append(B)

This algorithm has some similarities with the algorithm used by the LLVM
compiler in order to compute, for each variables, the sets of basic block where
they are live.

3.3. LIVENESS CHECK 33

3.3 Liveness check

Instead of computing live sets, sometimes we only need a simpler information:
given a program point and a variable, is the variable live at the program
point?

First we can use a very simple method, similar to the one variable at a
time algorithm used to compute liveness sets. In this case instead of iterating
over all variables, we only explore the blocks where a particular variable is
live. Then, if the program point p is visited by the algorithm, v is live at this
point. This approach is presented in algorithm 9.

Algorithm 9 Liveness-check based on live-range computation.

1: function ISL1VEIN(variable v, programPoint p)
2 Seen <«)

3 P <« basicBlock(p)
4: Visit < |]

5: D < basicBlock(d)
6 if D = P and d after p then

7 return false

8 for each u € uses(v) do

9: U < basicBlock(u)

10: if P =U and u after p then

11: return true

12: Visit.append(U)

13: while Visit # || do

14: C' = Visit.pop()

15: for each B € predecessor(C) do
16: if B € Seen then
17: continue

18: if B = P then

19: return true
20: Seen.add(B)

21: if B # D then

22: Visit.append(B)
23: return false

This method does not need any pre-computation or any additional data-
structure. In some cases, depending on the number of queries, more efficients

34 CHAPTER 3. LIVENESS ANALYSIS UNDER SSA

methods can be used. If we pre-compute some data-structures first, the query
cost can be lowered.

We now describe such a solution, where we use an auxiliary data structure
to lower the query cost. First we examine the case where the graph is reducible.
We will later adapt our algorithm to the more general case of potentially
irreducible graphs.

Using the results from 3.2.2, we know that a variable defined at a program
point d is live at a program point p iff it is live at p or at the header of the
biggest loop containing p and not d, using only F,(G), the acyclic reduced
graph, to test for reachability.

Given the reduced graph and the loop nesting forest, finding out if a
variable is live at some program point can be done in two steps, as shown
in algorithm 10. First, if there exists a loop containing the program point p
and not the definition, pick the header of the biggest such loop instead as
the query point. Then check for reachability from this program point to any
use of the variable. Correctness is proved from the theorems used for liveness
sets.

Finding the biggest loop not containing the definition but containing the
query point is a problem similar to finding the least common ancestor (LCA)
of two nodes in a tree: the loop in question is the only direct child of the least
common ancestor which is an ancestor of the smallest loop containing the
query point. A LCA query can be answered in O(1), with a pre-computation
of O(n), as described in [4]. The algorithm described by Bender is based on
the Euler tour of the tree, that is the sequence of nodes as they are visited
by a depth first search. A simple adaptation of their algorithm can be made,
based on the insight that the biggest loop containing the query but not the
definition is the next node after the last occurrence of the LCA in an Fuler
tour of the loop-tree.

But since the depth of the tree is usually small, a simpler solution can be
used: the naive solution that just walks upward in the tree starting at both
nodes and stops when it encounter a common ancestor.

The third alternative method (shown in algorithm 11) is to pre-compute
the set of ancestors from the loop-tree for every node. Then a simple set
operation can find the node we are looking for: the ancestor of the definition
node are removed from the ancestor of the query point. From the remaining
ancestors, we pick the shallowest. Using bitsets, indexed with a topological
order of the loop tree, this operations are easily implemented. The removal is
a bit-inversion followed by a bitwise-and operation, and the shallowest

3.4. FROM REDUCIBLE CFG TO IRREDUCIBLE CFG 35

node is found by searching for the first-bit-set in the bitset. Since the
number of loops (and thus the number loop headers) is rather small, the
bitsets are themselves small as well and this optimization does not result in
much wasted space.

Algorithm 10 Liveness-check based on loop structure.
1: function IsL1VEIN(variable v, programPoint p)
2 Seen + ()

3 P <« basicBlock(p)
4: Visit « []

5: D < basicBlock(d)

6

7

8

9

if D = P and d after p then
return false
B < biggestLoop(P, D)
: for each u € uses(v) do
10: if basicBlock(u) € Reachable(B) then

11: Return true
12: return false

Algorithm 11 Given two basic blocks, find the biggest loop containing the
first block but not the second.
1: function GREATESTNONCOMMONANCESTOR (basicBlock A, basicBlock

B)
2: loopA < loopNode(A)
3: loopB < loopNode(B)

4: nonCommonAncestors — loopTree Ancestors(loopA) —
loopTree Ancestors(loopB)

5 if nonCommonAncestors =[] then

6: return A

7: return min(nonCommonAncestors)

The reachability information can be stored in bitset, in every basic block.

3.4 From reducible CFG to irreducible CFG

The algorithms based on loops that we described above, for both the liveness-
set problem and the liveness-query problem, are only valid for reducible

36 CHAPTER 3. LIVENESS ANALYSIS UNDER SSA

graphs. We can derive an algorithm that works for irreducible graphs as well,
in the following way: transform the irreducible graph to a reducible graph
while keeping the liveness identical, in practice the graph is not actually
modified, but the algorithms are changed to simulate the modification of some
edges, on the fly.

As hinted by Ramalingam, adding a dummy node to represent the headers
can help dealing with irreducible graphs. Contrary to Ramalingam we want
to keep the liveness identical as well, not only the dominance information.

We can iteratively construct our modified graph G’ from the control flow
graph G in the following way:

Given a loop L, we define a new graph U, as (V', E’), where:

Vi = Vu{i}

E' = FE — LoopEdges(L) — EntryEdges(L)
U{(p,0r)|p € PreEntries(L)}
U{(p,d.)|3x € Headers(L), (p,x) € LoopEdges(L)}
U{ (01, h)|h € Entries(L) U Headers(L)}

In other words, for a given loop L, add a new node to the graph: d;.
Replace every entry ! edge (z,%) by two edges (x,d;) and (dr,y). Similarly
replace every loop-edge (z,y) by two edges (z,dr) and (dr,y).

Applying the transformation to every loop in the forest, will transform G
into G’. Contrary to the graph built by Ramalingam, G’ is not acyclic. In fact
the loop structure is preserved. Furthermore, since, from the construction,
every loop has only one entry node (dz), the graph is reducible.

Theorem 4. Given a loop L, for every two nodes x and y from G, x domy
in G iff x domy in V.

Proof. Take two nodes x and y from G, such that z dom y in ¥/,. Given
p an arbitrary path in G from r to y, we show that x is included in that
path. From p, we construct p’ a path in W from r to y as follow: for every
edge (u,v) from p not present in W, (v is a header or an entry node), (u,dy)
and (07, v) are valid edges from E’, and we replace (u,v) by those two edges.
Since z dom y in W7, and p' is a path from r to y, it must include z. 0y, is

lit is important not to restrict to the loop headers

3.4. FROM REDUCIBLE CFG TO IRREDUCIBLE CFG 37

the only node in p’ that was not in the original path p, this proves x was in
the original path.

Reciprocally, suppose that x dom y in G. We show that any path from
U’ p, from 7 to y, goes through . We construct a path in G using p as a
basis. Starting from the end of the path, for every sub-path u,d., v in p:

e if x € L, then there exists a path, p’, from r to v in G which might only
contain z as the last node (v is not dominated by any other node from
the body of L), we replace the sub-path from r to v with p" and stop
the transformation.

e clse z ¢ L, then there exists v’ € L such that (u,v’) € E and there is
a path in G included in L from v’ to v, this path does not contain x
(x ¢ L) and the sub-path can be replaced by the path from L.

Finally we have a path in G, from r to y. Because x dom y, this path
contains z. Since our transformation did not add x, x was in p. [

Lemma 4. Given three nodes x,y and z from G such that x dom z, there
exists a path from y to z which does not contain x in G iff there exists a path
from y to z in W, which does not contain x.

Proof. Given a path p from y to z in G which does not contain x. Since
x dom z, x dominates every node from p. For every edge of p, (u,v), from G
which does not exist in ¥/ , there exists d;, and v’ such that (u,dr) and (d.,v")
are edges from W/ . v is either en entry node of the loop, or a loop header, it
means it is not dominated by any node of the loop. Since z dominates every
node from p, it dominates v, and x is not part of the loop. Hence, there exists
a path in L from v’ to v which does not contain x. So we can replace the
edge (u,v) by the path w,d.,v’,...,v which does not contain z. Repeating
this process will yield a path from ¥’ | from y to z which does not contain x.

Reciprocally, suppose we have a path in U from y to z which does not
contain x. For every sub-path u, dr, v, since x dom z, x dominates every node
from the path, in particular it dominates v. Since no node from the loop
dominate v, is not in L. It means there exists v' € L such that (u,v’) € £
and there is a path included in L from v’ to v, this path does not contain x
(x € L) and the sub-path can be replaced by the path from L. O

In the proof, no edges from ¢ to entry points which are not headers are
used. We only rely on the fact that an edge from d; to every loop headers

38 CHAPTER 3. LIVENESS ANALYSIS UNDER SSA

exists. This will allow us to omit those edges in the following algorithms. It
means that while omitting them affects the equivalence for dominance, they
do not play any role for the liveness analysis.

Theorem 5. For any SSA variable, and a node from G, it is live in G iff it
is live in W', .

Proof. Direct from the existence of the path in previous lemma. O

With this equivalence, we use the transformation of the control flow graph
to use our previous algorithm with irreducible graphs. The simplest solution
is to build the transformed graph, adding the necessary new edges, removing
others and adding new nodes for every loop (47, nodes). But we would like to
emphasize that actually modifying the graph is not required.

The modification is quite simple in practice, and even more if we restrict
ourself to loop-forest which only have one header per loop (as is the case of
the loop forest structure presented by Havlak [21]) In this case, we do not
need to insert any d; nodes. The header node and d; can be merged, since
07, has only one outgoing edge, and the header has only one incoming edge.

Additionally, the insertion and removal of edges can be simulated as well:
we need to redirect any entry- or loop- edge to it’s d;, node. We virtualize
the modification of the CFG in the following way: for every visited edge, if
the target of the edge is not part of the same loop, we virtually replace the
edge by an edge to the 67, node of the biggest loop containing the target but
not the source of the edge. We would then need to add an edge from the
node to every entry or header node. But as shown in our proof for liveness
equivalence, the edges to the entry nodes are not necessary.

To summarize, if our loop forest only have one header per loop, the
transformation is extremely simple, during the graph traversal, every entry
edge is simply redirected to the header of the biggest loop containing the
target but not the source (see algorithm 12). This transformation needs to
be done for the computation of the reachable set, and for the DAG_DFS
pass for liveness set, in both cases, every edge in CFG_succs needs to be
transformed before further processing.

3.5. INTERFERENCE 39

Algorithm 12 Edge transformation to make a control flow graph reducible
while keeping the liveness identical.

1: function TRANSFORMEDGE(CFGEdge (A, B))

2: LoopA <+ EnclosingLoop(A)
LoopB <+ EnclosingLoop(B)
LoopB Ancestor < Greatest NonCommonAncestor(LoopB, LoopA)
Redirect <+ B
if LoopA = LoopB then

if isHeader(B) then
Redirect < Header(LoopB)

else
10: Redirect < Header(LoopBAncestor)

11: return (A, Redirect)

3.5 Interference: value and intersection of live-
ranges

During register allocation or spilling, the information that is required is the
interference between two variables. Is it possible for two different variables
to share the same resources (usually a register)? Since computing this
information exactly requires knowing the exact dynamic execution of the
program, usually only a conservative approximation is computed. The simplest
approximation is to only use the liveness information: if two live-ranges
intersect, then we consider that the corresponding variables interfere.

Using live-sets, the intersection graph of all variables can be easily com-
puted [3]. Since this construction is expensive, both in time and space, it is
worth building it only if the algorithm asking for this information is inten-
sively querying. Furthermore the results of the analysis are easily invalidated
by many program transformations (for example value-numbering, live-range
splitting, code-motion, etc.).

In practice, under SSA, intersection of the live-ranges of two variables can
be expressed as a liveness-query [13].

Theorem 6. The live-ranges of two different variables intersects if one
variable is live at the definition point of the other variable.

Proof. If the live-range of a and the live-range of b intersect. There exists p

40 CHAPTER 3. LIVENESS ANALYSIS UNDER SSA

a program point where a is live and b is live. Since the variables are under
SSA Form, the definitions of a and b dominates p. We know that def, dom p
and def, dom p, so one if the definition must dominate the other. Suppose
def, dom def.

So there is a path, from def, to p, which does not contain def,. Since a is
live at p, there is a path from p to a use of a which does not contains def,.
This proves that a is live at def,.]

Instead of building the intersection graph of the variables, we can dynam-
ically answer intersection queries using the liveness-query algorithm shown in
the previous section. Since the pre-computation only relies on the shape of
the CFG, not on the variables themselves, no updates are necessary when a
new variable is introduced.

It is common to find in the literature the following definition of interference
“two variables interfere if their live ranges intersect” (e.g. in [20, 13, 30]) or
its refinement “two variables interfere if one is live at a definition point of the
other” (e.g. in [14]). Actually, a and b interfere only if they cannot be stored
in a common register. Chaitin et al. discuss more precisely an “ultimate
notion of interference” [15]: a and b cannot be stored in a common register
if there exists an execution point where a and b carry two different values
that are both defined, used in the future, and not redefined between their
definition and use.

This definition of interference contains two dynamic (i.e., related to the
execution) notions: the notion of liveness and the notion of value. Analyzing
statically if a variable is live at a given execution point is not decidable since
it can be reduced to the halting problem (given a variable defined at the entry
of the program and only used at the exit node, it is live at the exit node if and
only if the program terminates). We previously provided a (quite accurate in
practice) approximation defined with paths: reaching definition and upward
exposed use [3]. In SSA with the dominance property — in which each use
is dominated by its unique definition, so it is defined — upward exposed use
analysis is sufficient.

The notion of value is even harder and can be approximated using data
flow analysis on non trivial lattices (see for example [1, 7]). This has been
extensively studied in particular in the context of partial redundancy elimi-
nation. The scope of variable coalescing is usually not so large, and Chaitin
proposed the following conservative test: two variables interfere if one is live
at a definition point of the other and this definition is not a copy between

3.5. INTERFERENCE 41

the two variables.

This interference notion is the most commonly used, see for example how
the interference graph is computed in [3].

Chaitin et al. noticed that, with this conservative interference definition,
when a and b are coalesced, the set of interferences of the new variable
may be strictly smaller than the union of interferences of a and b. Thus,
simply merging the two corresponding nodes in the interference graph is an
over-approximation with respect to the interference definition.

For example, in a block with two successive copies b < a and ¢ < a where
a is defined before, and b and ¢ (and possibly a) used after, it is considered
that b and c¢ interfere but that none of them interfere with a. However, after
coalescing a and b, ¢ should not interfere anymore with the coalesced variable.

Hence, the interference graph has to be updated or rebuilt. Chaitin et
al. [15] proposed a counting mechanism, rediscovered in [19], to update the in-
terference graph, but it was considered as too space consuming. Recomputing
it from time to time was preferred [15, 14]. Since then, most coalescing tech-
niques based on graph coloring use either live-range intersection graph [31, 13|
or Chaitin’s interference graph with reconstructions [20, 11].

Actually, in SSA with the dominance property, things are simpler. Each
variable has, statically, a unique value, given by its unique definition. Fur-
thermore, the “has-the-same-value” binary relation defined on variables is
an equivalence relation. This property is used in SSA dominance-based copy
folding or global value numbering [10]. The value of an equivalence class is
the variable whose definition dominates the definitions of all other variables
in the class.

Hence, using the same scheme as SSA copy folding or constant propagation,
finding the value of a variable can be done by a simple topological traversal
of the dominance tree: when reaching an assignment of a variable b, if the
operation is a copy b < a, V(b) is set to V' (a), otherwise V' (b) is set to b.

The interference test is now both simple and accurate (no need to re-
build /update after a coalescing): a interfere with b if live(a) intersects live(b)
and V' (a) # V(b). (The first part reduces to def(a) € live(b) or def(b) € live(a)
thanks to the dominance property [13].)

42 CHAPTER 3. LIVENESS ANALYSIS UNDER SSA

3.6 Conclusion

In this chapter we have presented three contributions, based on properties
brought by the SSA form. First we described our novel liveness algorithm,
which constructs live-sets for each basic block based on the structure of the
loops. The more classical liveness algorithm, based on a data-flow approach,
visits every edge and iterates multiple times until no further change appears.
On the contrary, our algorithm first visits every edge once, and then visits
every node a second time.

Then, based on the insight that many modifications of the code invalidates
the liveness-sets, we propose an alternative approach: the liveness checking.
Instead of building the set of live variables, we pre-compute some data
structure, and only answer to the question “is the variable live at this program
point?”. The precomputed data structure only depends on the shape of the
control flow graph, this means that most modifications of the code (inserting
new instructions for example) will not invalidate the data.

Finally, liveness is often used to compute the interference between variables.
But interference does not consist of checking if the live-ranges intersect, it also
depends if the variables hold the same value. Chaitin gave an ultimate notion
of interference, and provided an approximation. We give an algorithm which
provides a more precise approximation and which does not need complex
updates when the code changes.

Chapter 4

SSA extensions: SSI

Since the inception of the SSA form, many variants have been presented,
usually in order to facilitate some analysis. In this chapter we present one of
this variant the Static Single Information (SSI) form. Different definitions have
appeared in the literature since it was first introduced. Our first contribution is
to clarify the differences between those definitions. Then we prove a property
related to liveness and the SSI form: the intersection graph of variables under
SSI (the intersection of the live-range of the variables) is an interval graph.
This allows us to build liveness algorithms which make use of this property.

4.1 Definitions and motivations

The static single information (SSI) form is an extension of SSA form
that treats uses and definitions symmetrically with respect to one another.
We now explore the different definitions found in the literature, by Ananian
and by Singer.

4.1.1 Ananian’s definition of SSI

Ananian introduced the SSI form in a similar way as Cytron et al. did for
SSA, i.e., using properties on paths [2]. For this purpose, we use the notions
of split set (similar to join set for SSA) and of upward-exposed use (similar
to reaching definition for SSA).

The split set of two CFG nodes u # v, denoted S({u,v}), is the set of
nodes w such that there exist two paths, one from w to u and one from w to

43

44 CHAPTER 4. SSA EXTENSIONS: SSI

v, with only w in common. A use of a variable x is upward-exposed at a
program point p if there is a path from p to the use that does not go through
any other use of x. ! A procedure satisfies the single upward-exposed-use
property if at most one use of each variable is upward-exposed at each
program point p.

The SSA form construction inserts ¢-functions at join points to merge
multiple variable definitions, thereby satisfying the single reaching-definition
property. Similarly, the SSI form construction inserts o-functions at split
points that reach multiple upward-exposed uses, thereby satisfying the single
upward-exposed-use property. A o-function has one argument (a variable
use) and it defines as many variables as successors of the split point. Several
o-functions placed at the end of the same block act as parallel statements. To
define liveness and dominance, each definition in a o-function is considered
to take place, not at the exit of the block where the flow splits, but on the
edge leading to the corresponding successor block, before the any of the ¢-
function related uses. Another simplification would be to assume any critical
edge (an edge going from a block with multiple successors, to a block with
multiple predecessors) is split, then we could place the definition induced by
the o-function at the entry of the successor basic block, and not on the edge.

Ananian provided a definition of SSI in the spirit of the definition of SSA.
Each variable has a pseudo-use at the CFG exit node . A code is in SSI
form if it is in minimal SSA form and if it satisfies the single upward-exposed-
use property. To satisfy this property for each variable x, o-functions of the
form (x,...,x) = o(x) can be inserted at the iterated post-dominance
frontier of the set of uses U,, denoted pDF*(U,) = S(U, U {t}). However,
as o-functions create new definitions, more ¢-functions may be inserted. Then,
in a later phase, variables can be renamed so that each variable is defined
only once and all uses can be renamed accordingly.

Figure 4.1 illustrates Ananian’s SSI definition. The situation is similar
for x and y despite the use of y on the back-edge. Two uses are upward-
exposed at the end of the central basic block, thus a o-function is inserted.
Now, the central use is reached by two definitions and a ¢-function is added

!Notice that this definition may differ from the one used by liveness analysis. Indeed, for
liveness analysis the corresponding path should not contain any definition of the variable.
In our context, both definitions of upward-exposed use can be considered, as soon as the
code is in SSA form. Any SSI construction algorithm on a non-SSA code may have to cope
with subtleties related to this notion of upward-exposed use. This is out of the scope of
this paper.

4.1. DEFINITIONS AND MOTIVATIONS 45

at block entry (see Figure 4.1b). Then, definitions and uses of x and y are
renamed, so that each variable has a unique definition and each use refers to
the right definition, see the code in Figure 4.1c.

X4 ... X4 ... Xy ...
y < o(y,y) Va2 < &(¥1,¥3)
X ¢(x,x) Xy < P(X1,X3)
.<_X ...<_X "'%XQ
...% ...% .F
.(_y y .<_y y %yZ y3
(%,%) < o(x) (X4, %3) ¢ 0(x2)
(y,y) < o(y) (Ya,¥3) < 0(y2)
.<_X %X ...(_X4
.ey ...(_y ...%y4

(a) Non-SSI program (b) With single reaching defini- (c) Strong SSI after renaming
tions and single upward-exposed
uses

Figure 4.1: Placement of ¢-functions and o-functions for strong SSI

Ananian’s algorithm for SSI construction, however, is not based directly
on the iterated dominance and post-dominance frontiers: instead, it uses a
data structure called the program structure tree (PST). As the soundness of
the PST is questionable (see Section 4.5), the correctness of his construction
algorithm is arguable. In this thesis, however, we do not question the
soundness of Ananian’s definition of SSI form. To summarize, a code is in SSI
form according to Ananian’s definition if it satisfies, before final renaming, the
single reaching-definition and single upward-exposed-use properties,
assuming that the CFG has a pseudo-definition at the entry node r and a
pseudo-use at the exit node t for every variable.

46 CHAPTER 4. SSA EXTENSIONS: SSI

4.1.2 Singer’s definition of SSI

Singer, in his Ph.D. thesis [29], proposed an alternative definition of SST form:
a program is in SSI form if, before renaming (and a fortiori after renam-
ing), it satisfies both the dominance property and the post-dominance
property. As we explained in chapter 2, the post-dominance property is
the symmetric of the dominance property, inverting the role of uses and
definitions. It means that, for each variable, any use that is upward-exposed
at a definition of the variable post-dominates this definition (such a use is
thus unique). After renaming, as there is a single definition per variable, the
(unique) definition of each variable is post-dominated by all its uses, and only
one is upward-exposed at the definition.

Singer assumed (incorrectly, as we will show) that this definition was
equivalent to Ananian’s. It is true that Ananian’s definition does satisfy
the post-dominance property; however, Singer’s definition does not imply
the single upward-exposed use property for all program points, only for
definition points as we explain in Section 4.2.1. Therefore, situations exist
where Ananian’s definition of SSI form leads to the instantiation of more
o-functions than with Singer’s definition. An example is given in Figure 4.2.
Now, with Singer’s definition, the situation is different for x and y. The two
uses of x post-dominate its unique definition, so no o-function is needed and,
consequently, no ¢-function either. For y, the use on the back-edge does
not post-dominate the definition of y, thus a o-function is added at the end
of the central block, then a ¢-function at the entry of the basic block (see
Figure 4.2b). Then, definitions and uses of y are renamed, leading to the
code of Figure 4.2c.

4.1.3 Semi-pruned and pruned SSI form

Similar in principle to SSA form, semi-pruned, and pruned variants of SSI
form can be defined. It is worth saying that the pseudo-use considered by
Ananian’s definition is only used to guide the placement of o-functions during
SSI construction. It does not alter the live-range of a variable, as doing so
would cause all variables defined locally in the procedure to interfere at the
exit point, which is not, in fact, the case.

For the sake of simplicity, we assume pruned SSI form, unless stated
otherwise.

4.2. WEAK AND STRONG SSI FORMS 47

X $— ... X $— ... X $— ...
V... V... Vi ...
y < oy,) V2 < 0(y1,¥3)
.<_X<_X . FX

...<_y —y ey —y ey, SRR el £
) (y,y)%U(YJ (Y47Y3)<—U(}J
J | |

.<_X ...<_X <_X
.<_y .<_y <_y4

(a) Non-SSI program (b) With dominance and post- (c) Weak SSI after renaming
dominance properties

Figure 4.2: Placement of ¢-functions and o-functions for weak SSI

4.2 Weak and strong SSI forms

Now that we have shown the different definitions, we differentiate them in
the following way:

e strong SSI denotes the SSI form defined by Ananian, i.e., with domi-
nance property, a pseudo-use for each variable, and the single upward-
exposed use property,

e weak SSI denotes the SSI form defined by Singer, i.e., with dominance
property and post-dominance property.

Now we will discuss the differences and common properties of these two SSI
definitions. First we will highlight the way the two forms differ, in particular
with variables used around loops. Then we will prove some useful lemmas,
common to both forms. We will use them as the base for the liveness-related
theorems in the next section.

48 CHAPTER 4. SSA EXTENSIONS: SSI

4.2.1 Weak and strong SSI forms are not equivalent

Figures 4.1 and 4.2 illustrate the difference between the two definitions of SSI
form. Both definitions insert one ¢-function and one o-function for variable y;
the difference is observed with respect to variable x. As we just discussed, the
different key properties for inserting ¢-functions and o-functions are linked
as follows:

1. the single reaching-definition property, with pseudo-definitions, is equiv-
alent to the dominance property;

2. the single upward-exposed-use property, with pseudo-uses, implies the
post-dominance property; this is not an equivalence as illustrated in
Figures 4.1 and 4.2.

The subtle difference between the single upward-exposed use property and
the post-dominance property is the following. If the post-dominance property
holds, then, before renaming, every use of a variable that is upward-exposed
at a definition of the variable is required to post-dominate this definition. As
the post-dominance relation forms a tree, this implies that, for each definition,
there is a single upward-exposed use (possibly the pseudo-use, unless pruned
SST is considered). On the contrary, if the single upward-exposed use property
is satisfied, then for any program point p, not necessarily a definition, there
is a single upward-exposed use u. This implies that p is post-dominated by w,
otherwise there is a path from p to v and a path from p to the pseudo-use at
the CFG exit node ¢, not containing u, and the single upward-exposed use
property is not satisfied for p.

Thus, a procedure that has been converted to strong SSI form also satisfies
the criteria for weak SSI form. Strong SSI enforces the single upward-exposed
use property for all program points, pruned SSI for the entire live-range, and
weak SSI only for all definitions. As our example illustrates, these conditions
are not equivalent. For SSA, the situation is different as enforcing the single
reaching-definition property for all uses is equivalent to enforcing it for the
entire live-range. To summarize, after renaming, for both weak and strong
SSI forms, the unique definition of a variable dominates all its uses and
each use post-dominates its definition. In (pruned) strong SSI, an additional
property is true: considering that each variable has a pseudo-use at the CFG
exit node, then, for each program point of the live-range, there is a unique
upward-exposed use.

4.2. WEAK AND STRONG SSI FORMS 49

4.2.2 Properties of variables in weak and strong SSI
forms

Variables in SSI form satisfy certain properties, common to weak and strong
SSI forms, which we will exploit in our proofs regarding the structure of
live-ranges.

Let x be a variable in (strong or weak) SSI form and let d be its (unique)
definition point. In (strong or weak) SSI form, each use of x post-dominates
d and the post-dominance relation forms a tree. Therefore, all uses belong
to a path, in the post-dominator tree, from ¢, the CFG exit node, to d in
the post-dominator tree (note that paths in the post-dominator tree take the
reverse direction from the CFG, e.g., each CFG node is reachable from t).
Therefore, one of these uses post-dominates all other uses. We call this use
the last use of x, and denote it by w.

Let LIVE denote the live-range of x, i.e., the set of program points where
x is live. By definition, for any strict program, p € LIVE if there is a path,
in the CFG, from p to some use of x that does not go through d. Because
all uses of x post-dominate d, and u post-dominates all other uses of x, the
previous path can be extended to form a path from p to u that does not
contain d. In other words, under both strong and weak SSI, LIVE is the set
of points p such that there is a path from p to the last use v that does not
contain d.

The next three lemmas hold for any variable x, in either weak or strong
SSI. Lemma 5 states that if x is live at a node p of the post-dominance tree,
then it is live at all descendants of p that are not descendants of d, i.e., in
the whole subtree rooted at p minus the subtree rooted at d.

Lemma 5. If p € LIVE, p pdom ¢, and —d pdom ¢, then q € LIVE.

Proof. Since —d pdom ¢, there exists a path, in the CFG, from ¢ to ¢ not
containing d. Because p pdom ¢, this path must contain p. Thus, there must
exist a sub-path from ¢ to p that does not contain d. Since p € LIVE, there
exists a path from p to u that does not contain d. By concatenating these
paths, we can construct a path from ¢ to v that does not contain d; it follows
that ¢ € LIVE. O

Lemma 6 states that if x is live at a node p of the post-dominance tree,
then it is live at all ancestors of p that are not ancestors of u, i.e., all nodes
in the path of the post-dominance tree leading to p and starting from, but
excluding, the least common ancestor of p and wu.

50 CHAPTER 4. SSA EXTENSIONS: SSI

Lemma 6. Ifp € LIVE, g pdom p, and —~q pdom u, then ¢ € LIVE.

Proof. Since p € LIVE, there is a path, in the CFG, from p to u that does
not contain d. Because —¢q pdom u, there exists a path from u to t that does
not contain ¢q. Concatenating the two paths yields a path from p to t via w,
such that the sub-path from u to ¢t does not contain ¢, and the sub-path from
p to u does not contain d. Since ¢ pdom p, this path from p to ¢ must contain
¢, thus ¢ must be in the sub-path from p to u that does not contain d. This
establishes the existence of a path from ¢ to u that does not contain d, from
which follows ¢ € LIVE. O

Lemma 7 states that if x is live at a node p of the post-dominance tree,
then the ancestors of d that are not ancestors of p dominate p, i.e., p is
dominated by all nodes in the path of the post-dominance tree leading to d
and starting from, but excluding, the least common ancestor of p and d.

Lemma 7. Ifp € LIVE, ¢ pdom d, and —~q pdom p, then q dom p.

Proof. Consider a path, in the CFG, from r to p. As p € LIVE, d dom p,
thus this path contains d. Since —¢ pdom p, there exists a path from p to
t without ¢. Since ¢ pdom d, ¢ must be included in the path from d to p,
otherwise we get a path from d to ¢t without ¢. It follows that ¢ dom p. [J

4.3 The intersection graph is an interval graph

This section proves that, for a procedure in either strong or weak SSI form,
the interference graph (that is, the intersection graph of the live-ranges, see
Section 3.5) is an interval graph. More precisely, we prove that the nodes
of a CFG can be totally ordered so that the live-range of each SSI variable
corresponds to an interval in this linearized representation. Under both strong
and weak SSI form, the start point of the interval is the definition of the
variable. Under strong SSI form, the end point of the interval is a use of the
variable, while this is not always true in weak SSI.

Our linearization order is based on the post-dominator tree, the dominance
relation, and, for weak SSI, a connected minimal loop nesting forest, as
described in Section 2.2.

4.3. THE INTERSECTION GRAPH IS AN INTERVAL GRAPH ol

4.3.1 Strong SSI form

The total order of blocks we provide in Section 4.3.2 for weak SSI form is
of course also suitable for strong SSI form. Nevertheless, as the situation is
simpler for strong SSI form, we prefer to define in this section a suitable order
of blocks that is more intuitive and easier to build.

First, we compute a dominance-based order, i.e., a partial order of
blocks that respects the dominance relation. In such an order, if a node u
strictly dominates a node v, then u appears before v. Such an order can be
computed by a topological traversal of the dominator tree. It can also be
obtained by a preorder or a reverse postorder of any depth-first search
(DFS) of the CFG.

Second, a preorder DFS traversal of the post-dominator tree is performed
with one additional constraint on the order in which the child nodes are
visited. Let u and v be two children of a given node in the post-dominator
tree, then the following must hold:

1. Constraint on dominance: if v dom v, then the preorder DFS
traversal of the post-dominator tree should visit the subtree rooted at
v before it visits the subtree rooted at u.

For that, it suffices to visit the children in the reverse order of the dominance-
based order computed in the preceding step. The resulting linearization of
the CFG nodes is called a reverse strong interval order. It starts at the
CFG exit node and ends at the CFG entry node. The third and final step
is to reverse the reverse strong interval order, yielding a strong interval
order.

Note that an order of nodes (i.e., of basic blocks) extends directly to an
order of program points by traversing all program points within a block from
entry to exit.

Consider the CFG of Figure 4.3a, whose corresponding dominator and
post-dominator trees are shown in Figures 4.3b and 4.3c respectively. To find
a dominance-based order, we can compute a DFS of the CFG considering the

nodes in preorder:
1,2,3,4,7,8,9,11,12,5,6, 10]

Next, we perform a preorder DF'S traversal of the post-dominator tree, shown
in Figure 4.3c. The children are visited with a priority given by the reverse
dominance-based order, yielding a reverse strong interval ordering. For
example, nodes 8 and 11 are both children of node 12 in the post-dominator

52 CHAPTER 4. SSA EXTENSIONS: SSI

(D)

OFOC)
ORCOC)

< pebe

@ 12

(a) Control-flow graph (b) Dominator tree (c) Post-dominator tree

Figure 4.3: Example of control-flow graph with its associated dominator and
post-dominator trees.

4.3. THE INTERSECTION GRAPH IS AN INTERVAL GRAPH 23

tree. Since node 8 dominates node 11, as shown in Figure 4.3b, we must visit
node 11 before node 8 during the preorder traversal of the post-dominator
tree. Similarly, we must also visit node 8 before node 4. One possible reverse
strong interval order that results from this traversal is the following:

[12,10,6,5,11,8,7,4,3,2,9,1]
Reversing this order yields the following strong interval order:
[1,9,2,3,4,7,8,11,5,6,10, 12]

Now, we move on to the proof itself. We prove that, if blocks (and thus
program points) are (totally) ordered according to a strong interval order,
then the live-range of each variable under strong SSI form is an interval whose
start point is the variable definition and whose end point is its last use (as
defined in Section 4.2.2).

First, we prove that, for any variable, any strong interval order visits the
node (and thus the program point) that contains its definition before all other
nodes where it is live. This result holds for both strong and weak SSI form
and will be used in the proofs for both of these representations. In other
words, the definition point will be the start point of the interval.

Theorem 7. Given a reverse strong interval order of the nodes in a CFG in
either strong or weak SSI form, the program point that contains the definition
of a given variable is always visited after all other program points where it is
live.

Proof. We use the same notations as in Section 4.2.2: x denotes the variable
of interest, d its definition point, u its last use, and LIVE its live-range. Let
p € LIVE.

We first exclude the trivial case where d is post-dominated by p in which
case, in a DFS of the post-dominator tree, d is always considered after p,
in particular in a reverse strong interval order. Now suppose that d is not
post-dominated by p. We prove that p is not post-dominated by d either.
p € LIVE implies the existence of a d-free path from p to u. As u post-
dominates d, there is a d-free path from u to t. These two paths can be
concatenated to provide a d-free path from p to ¢, which proves that p is not
post-dominated by d.

Since d and p are not comparable for the post-dominance, we can define
g = LCA(d,p), q # d, ¢ # p, to be the least common ancestor of d and p

54 CHAPTER 4. SSA EXTENSIONS: SSI

in the post-dominance tree. Let p’ and d’ be the corresponding children of
q. More formally, ipdom(p’) = ipdom(d’) = ¢, d' pdom d, and p’ pdom p.
Now, —p’ pdom d, by construction of p’, and u pdom d, by definition of SSI.
It follows that —p’ pdom u. Since p’ pdom p, by construction of p’, and
p € LIVE, Lemma 6 ensures that p’ € LIVE. Finally, because d’ pdom d, by
construction of d’, and —d’ pdom p’, by construction of d’ and p’, Lemma 7
proves that d’ dom p'. It follows that d’ and its descendant d is visited after
p’ and its descendant p in a reverse strong interval order. This is due to the
criterion for choosing children during the preorder DF'S of the post-dominator
tree: the reverse of the dominance order. O

The next theorem characterizes the live-range of a variable in strong SSI
as the descendants, in the post-dominator tree, of its last use, minus the
descendants of its definition.

Theorem 8. In strong SSI form, the live-range of a variable is the set of
program points post-dominated by its last use but not post-dominated by its
definition.

Proof. Again, let x denote the variable of interest, d its definition point, u its
last use, and LIVE its live-range. Recall that d dom v and u pdom d.

First, we show that u pdom p for every point p € LIVE. Assume to the
contrary that there exists a path from p to t that does not go through w.
Since p € LIVE, there is also a path from p to u. The existence of these
two different paths contradicts the single upward-exposed-use property of
strong SSI form, for at least one point, for example the point where they split.
Therefore, the complete live-range is included in the set of descendants of u in
the post-dominator tree. Conversely, Lemma 5 shows that any descendant of
u that is not a descendant of d belongs to LIVE. Finally, if p is a descendant
of d, all paths in the CFG from p to u contain d, thus p cannot belong to
LIVE. m

This yields our main result, in the case of strong SSI.

Theorem 9. In a strong interval order, the live-range of a variable in strong
SSI form corresponds to an interval. Moreover, this interval starts at the
definition point of the variable and ends at its last use.

Proof. This follows from Theorems 7 and 8. In a reverse strong interval
order, which is a preorder DFS of the post-dominator tree, the last use of

4.3. THE INTERSECTION GRAPH IS AN INTERVAL GRAPH 25

a variable is encountered before all the points it post-dominates. Then, the
subtrees rooted at its children are completely traversed, one after the other,
the last one being the subtree that contains the definition of the variable, as
Theorem 7 shows. Furthermore, according to Theorem 8, all points traversed
this way before reaching the variable definition correspond exactly to the
live-range of the variable.]

Corollary 1. For a procedure in strong SSI form, the interference graph, i.e.,
the intersection graph of the live-ranges, is an interval graph.

Proof. This follows immediately from Theorem 9.]

4.3.2 Weak SSI form

For weak SSI form, the general scheme of block linearization requires both
a post-dominator tree and a connected minimal loop nesting forest. The
construction of the order is similar to the strong interval order: first build
an auxiliary order, then do a preorder DFS traversal of the post-dominator
tree using the previous order, and finally reverse it. The difference is that,
during the preorder DF'S traversal of the post-dominator tree in the second
step, one additional constraint is imposed on the order in which children of a
given node are processed. Let u, v, and w be children of a given node in the
post-dominator tree. The two constraints that the order must now satisfy are
as follows:

1. Constraint on dominance: If v dom v, then the preorder DFS
traversal of the post-dominator tree should visit the subtree rooted at
v before it visits the subtree rooted at w.

2. Constraint on the loop nesting forest: if © and v belong to the
same loop, and w does not, then the subtree rooted at w should not be
visited between the subtrees rooted at u and v.

A total order resulting from such a traversal is called a reverse weak
interval order and its reversal is called a weak interval order. Next, we
prove that such an order satisfying both constraints exists.

Lemma 1 shows that any topological order of F.(G) respects the domi-
nance if £ is a connected minimal loop forest. In other words, when defining
a reverse weak interval order, the two constraints used to decide which sub-
tree to traverse next are not contradictory. If the second constraint (the

56 CHAPTER 4. SSA EXTENSIONS: SSI

constraint on the loop nesting forest) is satisfied, the first one (the constraint
on dominance) will be automatically satisfied. In particular, we call the order
given by [27, Theorem 4] a loop-dominance-based order.

Consider, the example of Figure 4.4. As explained in Section 2.2, the CFG
depicted in Figure 4.4a has two nested loops: L; = {2,3,4,5,6,7,8,9} and
Ly ={3,4,5,6}. Due to the edges between the different strongly connected
components encountered during the construction of the loop forest and the
nesting of loops, this CFG has only two possible loop-dominance-based orders:

1,2,3,4,5,6,7,8,9,10,11,12] (or 10 and 11 inverted)

Now, we perform a preorder DFS traversal of the post-dominator tree (shown
in Figure 4.3c) where the children of each node are visited according to the
reverse loop-dominance-based order; in particular, node 8 must be visited
before node 6. This provides us with the following reverse weak interval order:

[12,11,10,8,7,6,5,4,3,2,9,1]
Reversing this order yields the following weak interval order:
[1,9,2,3,4,5,6,7,8,10,11,12]

for which, as we will show, the live-range of any variable in weak SSI is an
interval.

Theorem 10. In a weak interval order, the live-range of a variable in weak
SSI form corresponds to an interval.

Proof. Again, let x denote the variable of interest, d its definition point, u its
last use, and LIVE its live-range. Let < denote a weak interval order. By
Theorem 7, we already know that d < p for any program point p € LIVE. To
establish that the live-range corresponds to an interval, it remains to prove
that ¢ € LIVE and d < p < ¢ imply p € LIVE, for any two points p and q.

The order < respects the post-dominance, as it is based on a preorder
DEFS traversal of the post-dominator tree; thus —d pdom p and —p pdom gq.
If ¢ pdom d, then ¢ pdom p due to the preorder DFS traversal of the post-
dominator tree, and p € LIVE by Lemma 5. Similarly, v pdom p implies
p € LIVE by Lemma 5 (recall that u pdom d, v € LIVE, and —d pdom p).
Therefore, we can assume that —u pdom p and —¢ pdom d.

4.3. THE INTERSECTION GRAPH IS AN INTERVAL GRAPH 57

(a) CFG with loops (shaded regions), loop-
edges (dotted lines), and loop headers (bold
nodes)

T

900000000

(b) Loop forest with an additional root node

Figure 4.4: Example of control-flow graph with an associated minimal loop
forest (tree).

58 CHAPTER 4. SSA EXTENSIONS: SSI

Recall that LCA(u,v) denotes the least-common ancestor of u and v
in the post-dominator tree. Since p < ¢, the subtree rooted at ¢ in the
post-dominator tree is visited before the subtree rooted at p, from which it
follows that LCA(d, ¢) pdom LCA(d,p). Let z = LCA(d,p). Let us define
d', p/, and ¢ such that d’ pdom d, p’ pdom p, ¢ pdom ¢, and ipdom(d') =
ipdom(p’) = ipdom(q’) = z. Since —u pdom p, it follows that —u pdom z.
Since z spdom d, by definition, and v pdom d, by the definition of weak SSI
form, it follows that u must be on a path in the post-dominator tree from
z to d, and therefore d’ pdom u. Figure 4.5 illustrates the post-dominance
relationship between the various nodes (or program points) that we just
introduced. In this figure, paths in the post-dominator tree are traversed
from left-to-right when computing a weak interval order.

d

s

q P u
s S
q p d
\1/

Figure 4.5: Post-dominance relation between the program points used in the
proof

Since ¢’ and u are in separate branches of the post-dominator tree, it
follows that —¢ pdom u. Since ¢ € LIVE, Lemma 6 shows that ¢’ € LIVE.
Then, using Lemma 7, we deduce that d dom ¢ and u dom ¢. As the
dominance relation forms a tree, either v dom d' or d’ dom u. If d dom w,
there is an elementary path from r to ¢’ that goes through d’ and then through
u, before reaching ¢’. This establishes the existence of a path from u to ¢’ that
does not contain d’. Moreover, since —d’ pdom ¢’, there exists a path from
¢ to t that does not contain d’, which contradicts the fact that d’ pdom wu.
Therefore, u dom d'.

Since ¢’ € LIVE and ¢ # d, there is a path from ¢ to u such that d
dominates each node on this path. The facts that d sdom u, © dom d’, and
d' dom ¢’ imply that there exists a path from u to ¢’ that includes d’, and d
dominates all points on this path. This, in turn, implies that d’, ¢/, and u all
belong to a cycle containing nodes that are dominated by d. Let L denote

4.3. THE INTERSECTION GRAPH IS AN INTERVAL GRAPH 29

the loop in the loop nesting forest such that the removal of the loop-edges of
L breaks this circuit. At least one node on this circuit must be a loop-header
for L. Therefore, d ¢ L, since d dominates each node on the circuit, and a
loop-header cannot be dominated by any other node within the loop when it
is a loop-entry node.

Now, recall that d’, p/, and ¢’ are all children of z in the post-dominator
tree, and that the preorder DFS traversal of the dominator tree, which
constructs the reverse weak interval ordering, processes the subtrees rooted
at the children of z in reverse loop-dominance-based order. Specifically, p/
must occur between ¢’ and d’ in the reverse loop-dominance-based order. The
fact that the reverse loop-dominance-based order respects the loop nesting
property implies that p’ € L. Therefore, there exists a path from p’ to v in L,
thus it does not contain d, which proves that p’ € LIVE. Finally, Lemma 5
shows that p € LIVE too. O]

Theorem 10, therefore, proves that the live-range of each variable under
weak SSI corresponds to an interval in a total order of CFG nodes. Moreover,
this order depends only on the structure of the CFG and not on the relative
positions of definitions and uses of variables within the basic blocks of the
CFG. This order can thus be pre-computed to help with liveness analysis, as
described in the following section, and it remains unchanged even if various
transformations move or delete instructions, as long as the CFG structure is
not modified. Note however that some forms of code motion may require the
insertion of additional ¢-functions and o-functions in order to preserve weak

SSI form.

Corollary 2. For a procedure in weak SSI form, the interference graph, i.e.,
the intersection graph of the live-ranges, is an interval graph.

Proof. This follows immediately from Theorem 10.]

The primary difference between strong and weak SSI is the “end” of the
interval corresponding to the live-range of each variable. Under strong SSI,
the end of the interval is the last use of the variable and it post-dominates all
points of the live-range. Under weak SSI, the end of the interval may not be
a use and it does not necessarily post-dominate all points of the live-range.
Figure 4.3 illustrates these points: if a variable is defined in node 1 and used
only in node 3, weak SSI does not require the insertion of any ¢-functions
or o-functions: the initial live-range is not split and the variable is live

60 CHAPTER 4. SSA EXTENSIONS: SSI

everywhere in the two loops, i.e., its live-range spans all CFG nodes 1 through
9. In particular, there is no point in the live-range that post-dominates the
entire live-range. The strong interval order proposed in Section 4.3.1 would
be incorrect here because 11 is between 1 and 6, but the variable is not
live in 11. With the weak interval order proposed in Section 4.3.2 for weak
SSI, the live-range is an interval, its end point is node 8, and 8 does not
post-dominate 6.

4.4 Liveness under SSI

Since we proved our results on the properties of live-range in the previous
section, we can now find out what the consequences are in term of liveness for
variables under SSI. The live-range of variables all have a particular shape,
this property leads to a much simpler liveness analysis.

In principle, it should be possible to convert minimal or semi-pruned SSI
form to pruned SSI form using dead code elimination. This ensures that
all o-functions and ¢-functions corresponding to a variable x in the pre-SSI
program are placed at points where x was originally live, and liveness analysis
is not required to ensure this property. We may still require liveness analysis
in SSI form, either to perform register allocation or to eliminate as many
copies as possible during SSI elimination. One possibility is to compute
liveness analysis prior to building SSI form, and then updating the results
to account for the fact that the conversion to SSI partitions each pre-SSI
variable into a set of smaller variables; the other possibility is to perform
liveness analysis once the procedure has been converted to SSI form.

This section points out a consequence of Theorem 9: under strong SSI
form, iterative data-flow analysis is not required. Instead, it suffices to
traverse the nodes of the CFG in reverse strong interval order and, within
each node, to traverse the instructions in reverse order. During this traversal,
a variable is live exactly from the first time one of its uses is encountered
(which is guaranteed to be the last use) until its definition is processed. The
consequences of this approach are twofold:

1. If live sets are explicitly required, neither data-flow equations nor
union of sets are needed throughout the traversal: the live-out set
of a basic block is exactly the live-in set of the previously-processed
block. Dataflow analysis is reduced to its simplest form: a single pass
over the control-flow graph is enough.

4.5. SINGLE-ENTRY SINGLE-EXIT REGION AND SSI 61

2. Register allocators based on linear scan [26] approximate the lifetime
of each variable as an interval, rather than an exact live-range. An
SSI-based implementation of a linear scan register allocator can compute
live intervals exactly without the need to compute live sets explicitly.

This fast approach to liveness analysis does not directly work for weak
SSI form since there may be no last use that post-dominates each point where
a variable is live. If the basic algorithm outlined above is applied, a point
where a variable becomes live may be encountered using the reverse weak
interval order before the last use is encountered. Instead, we need to identify,
for each variable, the last point (in the order) of the largest loop in the loop
nesting forest that contains its last use but not its definition. This will be
the end of the interval, as the proof of Theorem 10 shows. Be careful, this
property is not due to the fact that the order of blocks respects the nesting
of the loops as this is not true in general for a weak or strong interval order.
If this last point is pre-computed, the liveness analysis can be performed in
a unique pass, as for strong SSI, following the reverse weak interval order.
Another solution is to first compute, for each variable, an incomplete interval
from its definition to its last use, then to extend it in a second pass, following
the weak interval order and exploiting the structure of the loop forest.

Once liveness analysis has been performed, the interval property implies a
simple O(1)-time query to determine whether a variable x is live at a given
point p in a procedure. Under strong SSI form, the endpoints of the interval
are the definition point d and the final use u of x; therefore, x is live at p
if and only if d < p < u using a strong interval order. Under weak SSI,
one endpoint of the live interval is d, and liveness analysis must be run in
advance to determine the other endpoint, which we denote as ¢q. Therefore,
x is live at a point p if and only if d < p < ¢ using a weak interval order.
Similarly, computing live-in and live-out sets can be done in one pass, once
these intervals are identified.

4.5 Single-entry single-exit region and SSI

We will now clarify some of the mistakes made during the creation of SSI and
found in subsequent uses of the SSI form.

When Ananian first presented SSI, his motivation was the simplification
of backward data-flow algorithms. Because he would split the live-ranges
at the post-dominance frontier, a backward data-flow analysis, which would

62 CHAPTER 4. SSA EXTENSIONS: SSI

only gather information form uses and definition would become sparse: the
information can be attached to the variables.

But the subsequent papers, who used SSI as a basis, do not use this
property. Most people mistakenly thought that SSI would split at branch
points and could be used to gather precise information from conditional.

What SSI effectively does is splitting the live range of a variable so that
more contextual information can be attached to the variable name. But
depending of the information that is wanted, more or less splits are needed.
We can differentiate between several cases:

e information propagates backward and only change where uses are placed

e information propagates forward and can change even if there is no uses
of the variable, for example at branch points where a related variable is
checked

In the first case, the necessary split points are at the post-dominance
frontier, that is the strong SSI form. In the second case, more splits can be
needed. If the information that is computed is needed not only at the use and
definition points, but at every point of the live-range, then a split after every
branch point where information is gained and the variable is live is needed.
That is the way e-SSA, a variant of the SSA form presented by Bodik et
al. [5], splits the live-ranges to help solve the array bound checking problem.
Otherwise if the information is only needed at use-def points, a form with
less splits can be used.

Weiss [32] gives a definition of what he considers relevant program points:
the set of branch point relevant to the execution of the program point x is
the set of branch points such that there exists a path from the branch point
to the exit node, and another path to x, and both paths are disjoint except
for the branch point. Furthermore, as we recalled earlier, Weiss proved that
the iterated set ST (x,exit), is equal to the non iterated set S(z, exit), and
that this set is equal to the post-dominance frontier of x. This means that
whenever two nodes share the same set of relevant branch point, the execution
of one node implies the execution of the other, and any information gained
from a branch point is valid for both points.

This notion of relevance and the implied splitting at the relevant points is
in fact the form defined by Ananian’s in his pessimistic algorithm. Similarly
to the dependence flow graph by Johnson et al. [23], his algorithm would
split whenever the use points and the definition point would be in different

4.5. SINGLE-ENTRY SINGLE-EXIT REGION AND SSI 63

single-entry single-exit regions. Single-entry single exit regions are related to
the notion of relevant points: two nodes share the same set of relevant branch
points iff they are contained in the same set of SESE regions.

4.5.1 Single-entry single-exit region

Ananian’s algorithm for (strong) SSI construction [2] is based on an auxiliary
data structure called the program structure tree (PST) [22]. The PST
decomposes the control flow graph into a hierarchy of canonical single-entry
single-exit (SESE) regions. Extending the notion of dominance and post-
dominance to edges instead of just nodes, a SESE region is formed by a
pair of CFG edges (e;,€;) if e; dom e, e; pdom e;, and e; and e; are loop-
cycle equivalent, meaning that every cycle in the CFG that contains e; also
contains e;, and vice-versa.

A SESE region (e;,e;) is defined to be canonical if e; dom ey for any
SESE region (e;,ex) and e; pdom e for any SESE region (ex,e;). The
hierarchy of canonical SESE regions is based on the following definition of
containment: SESE region (e;, e;) contains a basic block b if e; dom b and
e; pdom b.

This notion of containment does not match the intuitive definition of SESE
regions, we assume that a SESE region is a connected region of the control flow
graph, while Johnson et al. definition does not ensure that property. Figure 4.6
shows an example where a SESE region is not a connected subgraph.

Moreover using their definition of SESE region, the following was stated a
theorem:

If Ry and R, are two canonical SESE regions of a CFG, then
either R; and Ry are node-disjoint, or R is contained within R,
(or vice-versa).

But as shown in our example, (A4, B) and (B, () are both canonical SESE
regions. However, both contain the basic block b, as per the definition
of containment provided above. Therefore, it is impossible to construct a
hierarchy of SESE regions, given this definition of containment.

The theorem itself contains three parts, and parts 1 and 3 wrongly assume
that “an edge cannot both dominate and post-dominate a node”. In the
example of Figure 4.6, the three edges A, B, and C' both dominate and
post-dominate the node (i.e., basic block) b. Actually, reasoning with nodes
(and not edges), it is not possible to construct an order of the nodes of a CFG

64 CHAPTER 4. SSA EXTENSIONS: SSI

that respects both the dominance and post-dominance relations, i.e., an order
denoted by < such that u < v if u dom v and v < v if v pdom u. Such an
order cannot exist because the header node of a for-loop or a while-loop may
simultaneously dominates and post-dominates every other node in the loop,
as shown in Figure 4.7. Thus, it is impossible to construct an order under
which the header occurs both before and after each node in the loop.

The following definition for SESE would make the theorem on program
structure tree hierarchy correct:

Definition 3. A SESE region is a connected subgraph of G = (V, E), such
that there exists a unique incoming edge from outside the region, and a unique
outgoing edge to outside the region.

This definition directly matches the intuitive concept of single-entry single-
exit, furthermore we can show that a SESE region defined this way is also a
SESE region as defined by Johnson et al.

Proof. The incoming edge obviously dominates any node from the region
(and thus the outgoing edge), similarly the outgoing edge post-dominates
every node from the region (and the incoming edge). Let us show that our
two distinguished (incoming and outgoing) edges are cycle equivalent. Given
a cycle containing the incoming edge. Since the source of the incoming edge
is not in the SESE region but its target is, there exists an edge from the cycle
such that its source is part of the SESE region, but its target is not. But our
definition of SESE states that this edges is unique, it is the outgoing edge of
the SESE. Similarly we can show that every cycle containing the outgoing
edge must contain the incoming edge. O

Similarly given two edges following Johnson’s definition, we can show
they are the incoming and outgoing edges of a SESE region matching our
definition: we only need to show that there is a subgraph of the control flow
graph such that they are incoming and outgoing edges.

Given an SESE region with edges (ej, €2), and the set of nodes such that:

e they are dominated by e;, and not dominated by e
e they are post-dominated by e,, and not post-dominated by e;

Let us show this set form a connected subgraph.

4.5. SINGLE-ENTRY SINGLE-EXIT REGION AND SSI 65

Proof. We note e; = (z1,x2) and ey = (y1,y2). Take (a,b) an edge such that
b is in the set and suppose (a, b) is different from e;.

First we prove that e; dominates a and e does not dominate a. Since e;
dominates b, any path from the start node to b contains ey, furthermore, since
(a,b) # e1, the same holds from a. This means e; dominates a. Since e; does
not post-dominates b, there exists a (cycle-free) path denoted p; from b to
the end node that does not contain e;. Since e, post-dominate b, p; contains
es. Given any cycle-free path (denoted ps) from start to a, it contains e;.
Suppose p, contains es as well, then the concatenation of p; and py contains
a cycle (since eq is contained in both sub-paths). Since e; and e are cycle
equivalent, e; can be found between this two occurrences of e,. Furthermore
since, e; is not in po, it must be in p;, after e;. But e; dominates ey, so
es most be preceded by e; in pp, this mean we would have a cycle in p, a
contradiction. So es is not contained in p;, and ey does not dominate a.

Now we prove that ey post-dominates a while e; does not.

Given any path from a to the end. Since p, is a path from start to a that
does not contain e; and contains ey, and since e; post-dominates ey, e; must
be found in the path. This means e; post-dominates a. Since e; does not
post-dominate b, there is a path, from b to the end, that does not contain e;.
Since (a, b) # ey, it means e; does not post-dominates a as well. This proves
that a is in the set.

We thus have shown the every predecessor from a node in the set is either
the x; (if e; = (a,b) or another node from the set. Reciprocally we can prove
that the successor is either y, or part of the set.

This proves the set is connected. O

4.5.2 Removal of o-functions

Since SSI and related forms are only concerned about live-range splitting,
in practice it means that o-functions are not required, only a way to split
a live-range across an edge is needed. This is something that SSA and ¢-
functions already provide: every o-function can be replaced by a corresponding
¢-function in each successor block.

This simplification makes the issue of removing the o-functions void, since
they are not introduced in the first place. If instead we want to keep the
o-functions, then, to go out of the SSI form, we can first do remove all
o-functions with a simple copy-propagation. Using either of the schemes,

66 CHAPTER 4. SSA EXTENSIONS: SSI

0

b+ ...

c
At g‘g
c.e 44— a
@ ... ¢ b @
Figure 4.6: (A, B) and (B, C) are canonical ~ Figure 4.7: Node 2 simulta-

SESE that have a partial overlap: both neously dominates and post-
contain block b. dominates node 4.

4.5. SINGLE-ENTRY SINGLE-EXIT REGION AND SSI 67

once we removed the o-functions, going out of SSI is now the same problem
as going out of SSA which we will explore in the next chapter.

68

CHAPTER 4. SSA EXTENSIONS: SSI

Chapter 5

SSA Destruction

5.1 Motivations

A naive SSA destruction increases even more the number of new variables
and the code size, because ¢-functions are replaced by variables and copies
from or to these variables. A solution, especially useful for JIT compilation,
is to introduce copies on the fly, during the SSA destruction, and only when
needed, as in Method IIT of Sreedhar et al. [31]. Also, to eliminate copies
or to avoid introducing them, some interference information, and thus some
liveness information, is required. Thanks to the dominance property in SSA,
one can avoid building explicitly the interference graph. Also, thanks to the
notion of dominance forest, Budimlié¢ et al. [13] proposed a SSA destruction
mechanism, more suitable for JIT compilation, as it reduces the number of
interference tests.

In light of previous work, our primary goal was to design a new SSA
destruction, suitable for JIT compilation, thus focused on speed and memory
footprint, as previous approaches were not fully satisfactory. However, to make
this possible, we had to revisit the way the SSA destruction is conceptually
modeled. We then realized that our framework not only can target speed, but
also addresses the problem of correctness and of efficiency (i.e., quality of
the resulting code).

Several papers have already addressed the SSA destruction problem. We
propose a new method because, first, we want to rely on a provably-correct
method, generic, simple to implement, without special cases and patches,
and in which correctness and quality of the result (i.e., optimization) are

69

70 CHAPTER 5. SSA DESTRUCTION

conceptually separated. And secondly, we want to develop a technique that
can be fast and not too memory-consuming, without compromising correctness
and quality. Let us first go back to previous approaches.

SSA destruction was first mentioned in the seminal paper by Cytron et
al. [18, Page 478]:

“Naively, a k-input ¢-function at entrance of a node X can be
replaced by k ordinary assignments, one at the end of each control
flow predecessor of X. This is always correct, but these ordinary
statements sometimes perform a good deal of useless work. If the
naive replacement is preceded by dead code elimination and then
followed by coloring, however, the resulting code is efficient”.

In other words, copies are placed in predecessor blocks to emulate the ¢-
function semantics and Chaitin-style coalescing [15] (as in register allocation)
is used to remove some of them.

Although this naive translation seems, at first sight, correct, it can lead
to subtle errors as pointed by Briggs et al. [9, Page 880] because of parallel
copies and /or critical edges in the control flow graph. Two typical situations
are identified, the “lost copy problem” and the “swap problem”, some patches
are proposed to handle them correctly, and a “more complicated algorithm
that includes liveness analysis and a preorder walk over the dominator tree” is
quickly presented for the general cases, but with neither a discussion of com-
plexity, nor a correctness proof. Nevertheless, according to the authors, this
solution “cures the problems that [they] have seen in practice” [9, Page 879).

The first solution, both simple and correct, was proposed by Sreedhar et
al. [31]. In addition to the copies at the end of each control flow predecessor,
the trick is to insert another copy at the entry of the basic block of the ¢-
function. This simple mechanism, detailed hereafter, is sufficient to make the
translation always correct, except for special cases that we point out. Several
strategies are then proposed to introduce as few copies as possible, including
a special rule to eliminate more copies than with standard coalescing and so
that “copies that it places cannot be eliminated by the standard interference
graph based coalescing algorithm” [31, Page 196]. This last (also unproved)
claim turns out to be correct, but only for the very particular way copies
are inserted, i.e., always after the previously-inserted copies in the same
block. Also, the way coalescing is handled is again more a patch, driven by
implementation considerations, than a conceptual choice. We will come back

5.2. CLEAN APPROACH 71

to this point later. Nevertheless, our technique is largely inspired by the
various algorithms of Sreedhar et al.

In other words, these previous approaches face some conceptual subtleties
that make them sometimes incorrect, incomplete, overly pessimistic, or too
expensive. This is mostly due to the fact that a clean definition of interference
for variables involved in a ¢-function is lacking, while it is needed both for
correctness (for adding necessary copies) and for optimization (for coalescing
useless copies). Our first contribution, beyond algorithmic improvements,
is to address this key point. Thanks to this interference definition, we
develop a conceptually SSA destruction framework, in which correctness
and optimization are not intermixed. The resulting implementation is much
simpler, with no special cases, and we can even develop fast algorithms for
each independent phase, without compromising the quality of results. The
rest of this section gives an overview of our technique, before diving into more
detailed explanations.

5.2 Clean approach

Consider a ¢-function ag < ¢(ay, ..., a,) placed at entry of a block By: ayg
takes the value of a; if the control-flow comes from the i-th predecessor
block of By. If ag, ..., a, can be given the same name without changing
the semantics of the program, the ¢-function can be eliminated. When this
property is true, the SSA form is said to be conventional (CSSA) [31]. This
is not always the case: after copy propagation or code motion, some of
the a; may “interfere” with each other (this SSA form is sometimes called
transformed SSA form, TSSA). The technique of Sreedhar et al. [31] consists
in three steps:

1. translate SSA into CSSA, thanks to the introduction of copies;
2. eliminate redundant copies;
3. eliminate ¢-functions and leave CSSA.

In their first method (Method I), the translation into CSSA is done as
follows. For each ¢-function ag <— ¢(aq, ..., a,) at entry of block By:

e n + 1 new variables a, ..., al, are introduced;

72 CHAPTER 5. SSA DESTRUCTION

e a copy a; < a; is placed at the end of B;, the i-th predecessor block of
By;

e a copy ag < ay is placed at entry of the block By (after ¢-functions);

e the ¢-function ag <— ¢(ay,...,a,) is replaced by af, <— ¢(al,. .., a,).

»'n

If a block contains several ¢-functions, then several copies needs to be
introduced. They are introduced at the same place and they should be viewed
as parallel copies. This is what we do here, as Leung and George in [25].
However, as far as correctness is concerned, they can be sequentialized in any
order, as they concern different variables. This is what Sreedhar et al. do in
all their methods.

Lemma 8. After the introduction of the new variables a; for all ¢-functions
and the corresponding copies, the code is in CSSA form. In other words,
replacing all variables a) by a new unique variable for each ¢ and removing
all ¢-functions is a correct SSA destruction.

Proof. First note that, after introduction of the copies, the code semantics
is preserved. The variables a; are copied into the variables a}, then fed into
the new ¢-function to create af, which is finally copied into ag. To show that
the code is in CSSA, note that the variables a, have very short live ranges.
The variables a;, for i > 0, are defined at the very end of disjoint blocks B;,
thus none is live at the definition of another: they do not interfere. The same
is true for af, whose live range is located at the very beginning of By, even
if By may be equal to B; for some i. Thus, the n 4 1 variables @ can share
the same variable name, as they are never simultaneously live on a given
execution path. O

It is now clear why the proposal of Cytron et al. was wrong. Without the
copy from a; to ag, the ¢-function defines directly ag. The live range of ay
can be long enough to intersect with on of the a}, i > 0: it is the case if qg is
live-out of the block B; where a} is defined. Two cases are possible: either
ap is used in a successor of B; # By, in which case the edge from B; to By is
critical (as in the “lost copy problem”), or ag is used in By as a ¢-function
argument (as in the “swap problem”). In the latter case, if parallel copies
are used, ag is dead before a} is defined but, if copies are without taking care
of potential conflicts, the live range of ag can go beyond the definition point
of a; and lead to incorrect code after renaming ay and a; with the same name.

5.2. CLEAN APPROACH 73

As Lemma 8 explains, splitting the definition of the ¢-function itself with
one additional variable at the block entry solves the problem. In the methods
of Sreedhar et al., the decision to keep the copy a} (in Method I) or to insert
it (in Method IIT) depends on the intersection of the live range of a; with the
live-out set of the block B;. But this techniques hides a subtlety: what does
“at the end of basic block” mean? Depending on the branching instruction,
the copies cannot always be inserted at the very end of the block, i.e., after all
variables uses and definitions. For example, for a ¢-function after a conditional
branch that uses a variable u, the copies must be inserted before the use of u.
Since any new copy that is inserted might interfere with u, the intersection
check have to be done with u as well, otherwise some incorrect code can be
generated. Consider the SSA code in Figure 5.1(a), which is not under CSSA
form. As w is not live-out of block By, the optimized algorithm (Method III)
of Sreedhar et al. considers that, in order to transform the code into CSSA
form, it is sufficient to insert a copy v’ of v at the end of By. But the copy is
inserted before the use of u (Figure 5.1(b)) and the code is still not CSSA since
u and v’ interfere. Removing the ¢-function, i.e., giving the same name to w,
u, and v" leads to the incorrect code of Figure 5.1(c). This problem, never
mentioned in the literature, needs to be solved for implementors. Fortunately,
it is easy to correct by considering the intersection with the set of variables
live just after the point of copy insertion, in our case the live-out set with the
addition of u, instead of simply the live-out set of the block.

An even more subtle case can happen, when the basic block contains
variables defined after the point of copy insertion. This configuration is possible
in embedded environments, where some DSP-like branching instructions have
a behavior similar to a hardware loop: in addition to the condition, a counter
u is decremented by the instruction itself. If u is used in a ¢-function in
a direct successor block, no copy insertion can split its live range. In this
case, it must then be given the same name as the variable defined by the
¢-function. If both variables interfere, we cannot use the same name for both
variables. In order to solve the problem, SSA could be used with more care
inside the compiler: either we avoid promoting the variable to SSA, some
instruction can be changed, or the control-flow edge can be split. While it
might not happen in general purpose computer, this point has never been
mentioned before: SSA destruction by copy insertion alone is not always
possible, in presence of complex branching instructions. For example, suppose
that for the code of Figure 5.2(a), the instruction selection chooses a branch
with decrement (denoted Br_dec) for Block B; (Figure 5.2(c)). Then, the

74

u<— ...
V< ...

By

By

W+ ¢(u,v)
LW

(a) Initial SSA code

Figure 5.1: Considering liveout sets may not be enough.

CHAPTER 5. SSA DESTRUCTION

. /\.

0

v v
B’I” u Bg,B4)

B, u .
V<.
By
B?"(u, B37 B4)
B, Bs
W o(u,v')
W
(b) Insufficient copy insertion
u<—... BO
V<.
B1 B2
W4V
Br(w Bs, By)
Bs By
W

(¢) Incorrect SSA destruction

5.2. CLEAN APPROACH 5

¢-function of Block By, which uses u, cannot be removed by standard copy
insertion since u interferes with t; and its live range cannot be split. To go
out of SSA, one could add t; =u — 1 in Block B; to anticipate the branch,
or one could split the critical edge between B; and Bs as in Figure 5.2(c). In
other words, simple copy insertions as in the model of Sreedhar et al. is not
enough in this particular case.

By By By
U ... U ... w4 ...
B, B,
o : <b(u_o,1ug) B @dec(m B, Bs) ‘
Up <— Uy @dec(u, B, Bs) ‘
to < us Bi
BT(UQ,Bl7B2) |:
to<u
BQ B2 ‘82
t1 < ¢(to, t2) t1 < o(u, t2) t1 < ¢(to, t2)
to <t +... to—t1 +... to<—t1+...
BT(tQ,BQ,Bg) BT(tQ,BQ,Bg) BT(tQ,BQ,Bg)

Bs

N L b))

Bs

Bs

(a) Initial SSA code (b) Branch with decrement (c¢) CSSA with an additional
(Br_dec) edge splitting

Figure 5.2: Copy insertion may not be sufficient.

These different situations illustrate again why SSA destruction must be an-
alyzed with care, and explain the reasons why correctness should be addressed
before even thinking of code optimization. Indeed, with aggressive SSA
optimizations, going out of SSA form can become bug-prone and complicated.

5.2.1 Going out of CSSA: a coalescing problem

Once the copies are inserted, the code is in CSSA, as explained in Lemma 8,
except for the special cases of branch with definition, described above. Then,

76 CHAPTER 5. SSA DESTRUCTION

going out of CSSA is straightforward: all variables involved in a ¢-function can
be given the same name and the ¢-functions can be removed. This solves the
correctness aspect. To improve the code however, it is important to remove as
many useless copies as possible. This can be treated as a classical coalescing
problem, as in register allocation. The difference resides in the complexity:
with Method I, the number of new copies and variables can be very large,
which can be too costly, especially if a interference graph is used. Sreedhar et
al. propose several improvements. The first proposed improvement consists of
the introduction of copies only when variables interfere and the conservative
update of the interference graph (Method II). A second technique consists of
a more involved algorithm that also uses and updates liveness information
(Method III). Finally a special “SSA based coalescing” can be used, that is
useful to complement Method I and Method II but is useless after Method III.
Those improved techniques all rely on the explicit representation of congruence
classes partitioning the program variables into the sets of variables that are
already coalesced together.

Sreedhar et al. use special coalescing rules depending on the method, but
this approach can be simplified. Actually, once the code is in CSSA, the
optimization problem is a standard aggressive coalescing problem (i.e., with
no constraints on the number of target variables) and we should be able to
use standard heuristics for this NP-complete problem [28, 8. The fact that
the code is in SSA does not make it simpler or special. Also, Method III
turns out to give better results than Method I followed by coalescing, even
though Method III was primarily designed for speed. This result can be
explained with the fact that Sreedhar et al. rely on a conservative definition
of interferences in order to decide if two variables can be given be same name
(coalesced). As we have discussed in Section 3.5, we can easily exploit the
SSA properties to identify when two variables have the same value: in this
case, they do not interfere even if their live ranges intersect. Then, with this
intrinsic definition of interferences, there is no point to compare, in terms of
quality of results, a method that introduces all copies first as in Method I
or on the fly as in Method III: they are equivalent. Furthermore, since our
definition of interferences is more accurate, more copies can be removed.

Another weakness in the model of Sreedhar et al. is the lack of flexibility
in the placement of copies, they are inserted in a sequential order at the end
or entry of a block. We prefer to stick to the SSA semantics, i.e., to rely on
parallel copies (all sources of every copy are read before any write occurs).
We then sequentialize these copies afterward, once we know which copies

5.2. CLEAN APPROACH 7

remain. The interest is two-fold. First, with sequential copies, some additional
interferences between the corresponding variables appear. This gives less
freedom to the coalescer, especially if we take into account additional register
constraints. Second, with parallel copies, we avoid a tricky update of liveness
information. Our approach allows us to handle all copies in a uniform way;,
this is fundamental to minimize the engineering effort.

In conclusion, with a more accurate definition of interferences, the use
of parallel copies, and a generic coalescing algorithm to eliminate copies,
we achieve our goal: a conceptually simple approach, provably correct, in
which correctness and optimization are separated. This is of important for
implementing SSA in an industrial compiler in order to avoid complex bugs.
We can now give an overview of the general process before detailing each
individual step.

5.2.2 Overview of the SSA destruction

To summarize, conceptually, our SSA destruction process has five successive
phases:

1. Insert parallel copies for all ¢-functions using in Method I of Sreedhar
et al. and coalesce all a] together.

2. Build the interference graph with an accurate definition of interference,
using the “SSA value” of variables..

3. Perform aggressive coalescing, possibly with renaming constraints.
4. Go out of CSSA by giving the same name to all coalesced variables.

5. Sequentialize parallel copies, possibly with one more variable and some
additional copies, when swaps are needed.

Step 4 is straightforward. We already explained Step 1 in Section 5.2.
Step 2 was detailed in previous chapter, in Section 3.5). Our accurate notion
of interference allows us to avoid rebuilding or updating the interference
graph, furthermore there is no need to rebuild or update the interference
graph, no need to develop a special SSA-based coalescing algorithm as in [31],
and no need to make a distinction between variables which can be coalesced
with Chaitin’s approach or not. The only important information is the fact
that they interfere or not.

78 CHAPTER 5. SSA DESTRUCTION

We will now describe Step 3 (Section 5.2.3), and Step 5 (Section 5.2.4).

Since correctness (Step 1) and optimization (Step 3) are independent, we
can develop algorithms to make the whole process fast enough for just-in-time
compilation. This will be explained in Section 5.3: fast live-range intersection
test (Section 5.3.1), fast interference test and node merging (Section 5.3.2),
“virtualization” of initial copy insertion (Section 5.3.3), i.e., copy insertion on
the fly similar to Method III of Sreedhar et al. These techniques allow us to
skip the construction of the liveness information and the interference graph,
and help us lowering the memory footprint.

5.2.3 Coalescing

As previously explained, the SSA destruction is nothing but a traditional
aggressive coalescing problem with no constraints on the number of colors.
If all copies are initially inserted, as in Method I of Sreedhar et al., any
sophisticated technique can be used. In particular, it is possible to use
weights to first examine copies placed in inner loops: this approach reduces
the number of static and dynamically-executed copies. Contrary to Sreedhar
et al. which do not use weights, we use a classical profile information to get
basic blocks frequency. However this weight may be slightly under-estimated:
if a swap is needed in order to sequentialize a parallel copy, additional copy
will be required (see Section 5.2.4).

We call virtualization the process of inserting copies on the fly, similarly
to the Method III of Sreedhar et al. With this technique, the copy variables
a; are created only when needed, but all the reasoning is done as if they were
inserted. To make this possible, we need to consider ¢-functions in a certain
order, this will have an impact on the coalescing. Also, Sreedhar et al. use a
deferred copy insertion mechanism that, even if not expressed in these terms,
amounts to build some maximal independent set of variables (i.e., the set
of variables that do not interfere), which are then coalesced. This approach
gives indeed slightly better results than reasoning one copy at a time. In
our virtualized version, we also process one ¢-function at a time, and simply
consider its related copies by decreasing weight.

We also address the problem of “copy sharing”. Consider again the
example of two successive copies b = a and ¢ = a. Thanks to our definition of
value, the fact that b is live at the definition of ¢ does not necessarily imply
that b and c interfere. Suppose however that a interferes with b and ¢ for some
other reason. In this case, no coalescing would occur although coalescing b and

5.2. CLEAN APPROACH 79

¢ would save one copy, by “sharing” the copy of a. Leung et al. [25] provide
examples ABI constraints where this situation occurs. This sharing problem
is difficult to model and optimize, in fact deciding the insertion point of the
copies is even harder, but we can still provide some optimizations. We can
coalesce two variables b and c if they are both copies of the same variable a
and if their live ranges intersect. We restrict ourself to intersecting live-ranges
because if they are disjoint, the optimization could increase the live range of
the dominating variable, thus possibly creating some interference not taken
into account. Section 5.2.5 mentions this important post-optimization, which
is a benefit provided by our value-based interference definition.

5.2.4 Sequentialization of parallel copies

In every steps of the algorithm, we treat the copies placed by Step 1 at the
end or entry of a given block as parallel copies. This indeed matches closely
the semantics of ¢-functions. As we explained previously, this gives us several
benefits: a simpler implementation, in particular for defining and updating
liveness information, a more symmetrical code, and fewer constraints for the
coalescer. However, since generic parallel copies are not part of any instruction
set, at the end of the process, we need to go back to standard code, i.e., write
the final copies in a sequential order. In most cases, we simply need to order
the copies in the right order, but sometimes an new variable, additional copies
are required. We describe this sequentialization algorithm here.
Conceptually, the algorithm is very simple but deriving a fast implemen-
tation is more complicated. Consider the directed graph G whose vertices
are the variables involved in the parallel copy and with an edge from a to b
whenever there is a copy from a to b (we write @ — b). This graph has the
following key property: each vertex has a unique incoming edge, the copy that
defines it (a parallel copy (b + a,c+ a) is possible but only if V(b) = V(c)
in which case one of the copies can be removed). Thus, G has a particular
structure: each connected component is a circuit (possibly reduced to one
vertex) and each vertex of the circuit can be the root of a directed tree. A
graph with this property is called a windmill graph in the literature. The
copies of the tree edges can be sequentialized starting from the leaves, copying
a variable to its successors before overwriting it with its final value. Once
these tree copies are scheduled, it remains to consider the circuit copies. If at
least one vertex of the circuit was the root of a tree, it has already been copied
somewhere, otherwise, we copy one of the circuit vertices into a new variable.

80 CHAPTER 5. SSA DESTRUCTION

Then, the copies of the circuit can be sequentialized, starting with the copy
into this “saved” vertex and back along the circuit edges. The last copy is
done by moving the saved value in the right variable. Thus, we generate
the same number of copies as expressed by the parallel copy, except possibly
one additional copy for each circuit with no tree edge, i.e., no duplication
of variable. For example, for the parallel copy (a +— b,b — ¢, ¢+ a,c > d),
there is one circuit (a,b,¢) and an edge from ¢ to d, so we generate the copies
d=c¢,c=a,a=0b,and b=d (and not b = ¢).

The algorithm emulates a traversal of G (without building it), allowing
to overwrite a variable as soon as it is saved in some other variable. When
a variable a is copied in a variable b, the algorithm remembers b as the last
location where the initial value of a is available. This information is stored
into resource(a). The initial value that must be copied into b is stored in
pred(b). The initialization consists in identifying the variables whose values
are not needed (tree leaves), which are stored in the list available. The
list to_do contains the destination of all copies to be treated. Copies are
first treated by considering leaves (while loop on the list available). Then,
the to_do list is considered, ignoring copies that have already been treated,
possibly breaking a circuit with no duplication, thanks to an extra copy into
the fresh variable n.

5.2.5 Qualitative experiments

The experiments were done on the integer subset of the SpecC2000 benchmarks
compiled at aggressive optimization level. The compiler used was an Open64-
based production compiler whose code generator exploits the SSA form at
machine level. Renaming register constraints, such as calling conventions
or dedicated registers, are also treated with preliminary copy insertions and
coalesced as copies due to ¢-functions.

First, we evaluated how the accuracy of the interference impacts the
quality of coalescing. We implemented seven variants of coalescing. Below
a — b is a copy to be removed and X and Y are the congruence classes (see
Section 5.2.1) of a and b that will be merged, in case of coalescing, into a
larger class.

Intersect X and Y can be coalesced if there is no variables x € X and y € Y
whose live ranges intersect.

5.2. CLEAN APPROACH

Algorithm 13 Parallel copy sequentialization algorithm

1: function SEQUENTIALIZE(parallelCopies P)
2: available < ||

3: to_do <« |]

4: for each (a — b) € P do

5 resource(b) <— nil

6: for each (a — b) € P do

7: resource(a) < a

8: pred(b) + a

9: to_do.push(b)

10: for each (a — b) € P do

11: if resource(b) = nil then
12: available.push(b)

13: while to_do # [| do

14: while available # [| do
15: b < available.pop()
16: a < resource(pred(b))
17: emit_copy(a — b)

18: resource(pred (b)) < b
19: if pred(b) = a then
20: available.push(a)
21: b < to_do.pop()
22: if b # resource(pred(b)) then
23: emit_copy(b— n)
24: resource(b) < n
25: available.push(b)

82 CHAPTER 5. SSA DESTRUCTION

Sreedhar | This is the coalescing complementing Method I of Sreedhar et
al. X and Y can be coalesced if there is no pair of variables (z,y) €
(X xY)\ {(a,b)} whose live ranges intersect: (a,b) is not checked as a
and b have the same value.

Chaitin X and Y can be coalesced if there is no variables z € X and y € Y
such that x and y interfere following Chaitin’s definition, i.e., z is live
at the definition of y and this definition is not a copy z + y (or the
converse).

Value X and Y can be coalesced if there is no variables x € X and y € Y such
that = and y interfere following our value-based interference definition,
i.e., their live ranges intersect and have a different value, as explained
in Section 3.5.

Sreedhar Il This is the virtualization mechanism used in Method III of
Sreedhar et al. Copies are inserted, considering one ¢-function at a
time, as explained in Section 5.2.3. We added the SSA-based coalescing
of Method I, which is, as pointed out by Sreedhar et al., useless for
¢-related copies, but not for copies due to register renaming constraints.

Value + IS This is Value, extended with a quick search for an independent
set of variables, for each ¢, as in Sreedhar Il

Sharing This is Value + IS, followed by our copy sharing mechanism, see
Section 5.2.3. If ¢ is live just after the copy a — b and V(c) = V(a),
i.e., a and c have the same value, then, denoting Z the congruence class
of e, 1)if Y = Z and Y # X, the copy a — b is redundant and can
be removed; 2) if X, Y, and Z are all different, and if Y and Z can be
coalesced (following the Value rule), the copy a — b can be removed
after coalescing Y and Z as c¢ has already the right value.

Figure 5.3 gives, for each variant, the ratio of number of remaining static
copies compared to the less accurate technique (Intersect). Comparing the
cost of remaining “dynamic” copies, computed with a static estimate of the
basic block frequencies, gives similar results. The first four variants show what
is gained when using a more and more accurate definition of interferences
(from Intersect to Value).

It is interesting to note, again, that Sreedhar | is quite inefficient as, for
example, it cannot coalesce two congruence classes X and Y if X XY contains

5.2. CLEAN APPROACH 83

1 ==
0.9
0.8
[Intersection
0.7 4 M Sreedhar |
[J Chaitin
[value
B Sreedhar Il
[value IS
0.6 W Sharing
0.5
0.4 -H “V
& o

Figure 5.3: Impact of interference accuracy and coalescing strategies on
remaining number of moves: number of remaining static copies compared to
Intersect.

two pairs of intersecting copy-related variables. Introducing variables on the
fly as in Method III avoids this problem as only copies that cannot be removed
by the SSA-based coalescing are introduced (but it is not tuned in [31] to
optimize weighted moves). Also, the independent set search integrated in this
method improves the results compared to Value, which is the basic version
with our value-based interference. If this independent set trick is also added
to Value, our technique outperforms Sreedhar Il (version Value + IS). The
last variant, Sharing, shows that we can go even further with our additional
sharing mechanism.

These experiments confirm that the decomposition of the problem into
the insertion of parallel copies followed by coalescing with an accurate identi-
fication of values is sufficient to obtain the best quality so far. In addition, it
is also a clean and flexible solution because, with our intrinsic value-based
interference definition, the fact that two variables can be coalesced does not

84 CHAPTER 5. SSA DESTRUCTION

depend on the way we introduce copies, either all before coalescing as in
Method I or on the fly as in Method III. With less programming effort, we
can do slightly better than Sreedhar Il in terms of quality of results. More
importantly, since our framework separates the correctness and the quality
of results from how coalescing is implemented, we can now concentrate on
speed and memory optimizations. These two points are addressed in the next
section.

5.3 Towards a more efficient algorithm

Implementing the technique of Section 5.2.2 may be too costly. First, it
inserts many instructions later considering them as useless, furthermore the
insertion of the copy instructions is expensive as it needs to change the
intermediate representation of the code. This process introduces many new
variables as well, and the size of the variable universe has an impact on the
liveness analysis and the interference graph, slowing down our algorithm.
Also, if a general coalescing algorithm is used, a graph representation with
adjacency lists (in addition to the bit matrix) and a working graph to explicitly
merge nodes when coalescing variables, would be required. Additionally these
constructions, updates, manipulations are not only time-consuming but also
memory-consuming. We can speed-up the whole process by:

e avoiding the use of a working graph and even of an interference graph,
while still relying classical liveness information;

e replacing classical liveness computation by fast liveness checking;

e emulating (“virtualizing”) the introduction of all initial copies, as in
Method III of Sreedhar et al.

If an interference graph is available, it is not clear that using an additional
working graph is more expensive, but, in the context of aggressive coalescing,
both Chaitin [14] and Sreedhar et al. [31] preferred not to use one. To get
rid of it, Sreedhar et al. manipulate congruence classes: sets of variables
that are already coalesced together. Then, two variables can be coalesced
if their corresponding congruence classes do not contain any two interfering
variables, one in each congruence class. This quadratic number of variable-to-
variable interference tests might be expensive. In Section 5.3.2, we address

5.3. TOWARDS A MORE EFFICIENT ALGORITHM 85

this problem and propose a linear algorithm for interference detection between
two congruence classes.

When an interference graph is not available, it is not possible to directly
gather the list of variables that interfere with a given variable. Instead
queries are typically restricted to interference checking, i.e., existence of an
interference. The classical approach consists in computing a full interference
relation, but stored only as a bit matrix. This needs a costly pre-computation
phase: we need to explore the whole program and use live sets to build
interferences. After this pre-computation, queries are done in constant time.
A second approach performs value tests, dominance checks, and liveness
checks, without relying on any pre-computation of live sets. Queries are
slightly more time-consuming, but they avoid the use and storage of any
interference graph. Section 5.3.1 explains the use of such methods.

Finally, Section 5.3.3 explains how we adapt the virtualization mechanism
used in Method III of Sreedhar et al., which inserts copies only when needed,
to avoid the introduction of many new variables and of useless copies that
will be removed.

5.3.1 Live-range intersection tests

Remember Section 3.5. We need two tests: a test of live range intersection
and a test of equality of values. In the next section, we explain how we
can check, with this notion of interference, whether two congruence classes
(sets of variables already coalesced) interfere. Before, we need an algorithm
to decide if two live ranges intersect. Several methods can be used for
testing live-range intersection, either a classical approach building live-in and
live-out sets, or a more refined approach using SSA properties, which we have
described in chapter 3.

In the next section, we do not care about the algorithm used in practice,
they are used as a black box for developing a linear algorithm that checks
interference between congruence classes.

5.3.2 Linear interference test between two congruence
classes, with extension to equalities

We now develop one of our main contribution: how to efficiently perform an
interference test between two sets of already-coalesced variables (congruence

86 CHAPTER 5. SSA DESTRUCTION

classes in Sreedhar et al. terminology). Suppose that the two tests needed
to decide the interference of two SSA variables — the live-range intersection
test (Section 5.3.1) and the “has-the-same-value” test (Section 3.5) — are
available as black boxes. We can avoid having a quadratic number of tests.
For that, we simplify and generalize the dominance-forest technique proposed
by Budimli¢ et al. to check linearly if a set of live ranges is intersection-free
or not [13]. Our contributions are:

e we avoid constructing explicitly the dominance forest;
e we are also able to check for interference between two sets;
e we extend it to support the notion of equality of value.

Given a set of variables, Budimli¢ et al. define its dominance forest as
a graph forest where ancestors of a variable are exactly the variables that
dominate it (the dominance between variables corresponds to the dominance
of their corresponding definition points). The key idea of their algorithm is
that the set contains two intersecting variables if and only if it contains a
variable that intersects with its parent in the dominance forest. Then we
simply traverse the dominance forest and check every edge for live-range
intersection.

Instead of constructing explicitly the dominance forest, we represent each
set of merged variables as a list ordered according to a pre-DF'S order < of the
dominance tree (i.e., a depth-first search where each node is ordered before
its successors). Then, because querying if a variable is an ancestor of another
one can be achieved in constant time (simple dominance test, we only need to
check if one is an ancestor of the other in the dominance tree), simulating the
stack of a recursive traversal of the dominance forest is straightforward. Thus,
as in [13], we can derive a linear-time intersection test for a set of variables,
see Algorithm 14.

Suppose now that we have two intersection-free sets (two congruence
classes of non-intersecting variables) blue and red. To coalesce them, we
need to check if there is an intersection between both. We can do as if the two
sets were merged and then apply the previous technique. However, we can
save some intersection tests when we compare two variables originating from
the same set: in Line 6 of the previous algorithm, the intersect test should
first check if parent and current belong to a different list before running an
expensive intersection test. Also, since both sets are represented as an ordered

5.3. TOWARDS A MORE EFFICIENT ALGORITHM 87

Algorithm 14 Check intersection in a set of variables
1: function SET_INTERSECTION (variables sorted in preorder of the domi-
nance tree)
stack < ||
for each var in variables do
while stack is not empty and not dominate(stack.last,var) do
stack.pop()

if stack is not empty and intersect(var, stack.last) then
return true
stack.push(var)

return false

list, traversing the lists in order is straightforward. We only need to use two
indices and advance in the right list, according to the pre-DFS order < of
the dominance tree. Our improved algorithm uses two indices idz_red and
tdx_blue and the main loop of the algorithm skips variables from the same
set.

Finally, we extend this intersection technique to an interference test
that takes equalities into account. Suppose that b is the parent of a in the
dominance forest. In the previous algorithm, the induction hypothesis states
that the subset of already-visited variables does not contain any intersection.
Then, if ¢ has been already visited, the fact that b and a do not intersect
guarantees that ¢ and a do not intersect, otherwise the intersection of b and ¢
would have been already noticed. However, for interferences with equalities,
this no longer holds. The variable ¢ may intersect b but if they have the same
value, they do not interfere. The consequence is that, now, the fact that a and
b do not intersect does not guarantee that a and ¢ do not intersect. However, if
a does not intersect b and any of the variables that intersect b, we can be sure
that a does not intersect any of the already-visited variables. To speed up such
a test and to avoid checking intersection between variables in the same set,
we keep track of one additional information: for each variable a, we store the
nearest ancestor of a that has the same value and that intersects it. We call it
the “equal intersecting ancestor” of a. We assume that the equal intersecting
ancestor is pre-computed within each set, denoted by equal_anc_in(a), and
we will compute the equal intersecting ancestor in the opposite set, denoted by
equal_anc_out(a). We can now give the algorithm for interference test with
equality. The skeleton is the same as Algorithm 14, with the patch to progress

38

CHAPTER 5. SSA DESTRUCTION

Algorithm 15 Check intersection between two sets of intersection-free vari-

ables

1: function SET_INTERSECTION(list_red, list_blue)

2:

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:

21:

stack « ||
idx_red <0
idx_blue < 0
while idz_red < length(list_red) or idx_blue < length(list_blue) do
advance blue < (idx_red = length(list_red)
or (idx_red < length(list_red)
and idx_blue < length(list_blue)
and list_blue|idz_blue] < list_red[idz_red]))
if advance_blue then
var < list_bluelidz_blue]
tdx_blue < idx_blue + 1
else
var < list_red[idz_red|
tdx_red < idv_red + 1
while stack is not empty and not dominate(stack.last,var) do
stack.pop()

if stack is not empty and intersect(var, stack.last) then
return true
stack.push(var)

return false

5.3. TOWARDS A MORE EFFICIENT ALGORITHM 89

along the two lists Red and Blue, and where the call Line 14 is now a call
to the interference test of Function interference. The principles of the
algorithm are given in the codes themselves. The use of two equal intersecting
ancestors, in and out, is to make sure that the Function intersect(a, b),
which runs a possibly expensive intersection test, is performed only if a and b
do not belong to the same set.

: function UPDATE_EQUAL_ANC_OUT(variable a, variable b)
tmp < b
while (tmp # NULL) and (intersect(a, tmp) = false do
tmp <— equal_anc_in(tmp)

: function CHAIN_INTERSECT(variable a, variable b)
tmp < b
while (tmp # NULL) and (intersect(a, tmp) = false do
tmp <— equal_anc_in(tmp)

10: if tmp = NULL then

1
2
3
4
5: equal_anc_out[a] < tmp
6
7
8
9

11: return false
12: else
13: return true

14: function INTERFERENCE(variable a, variable b)
15: equal_anc_out(a) = NULL
16: if b # NULL and (a and b are in the same set) then

17: b < equal_anc_out(b)

18: if b < NULL then

19: return false

20: if value(a) # value(b) then

21: return chain_intersect(a, b)
22: else

23: update_equal_anc_out(a, b)
24: return false

We point out that once a list is empty and the stack does not contain any
element of this list, there is no more intersection or updates to make. Thus,
the algorithm can be stopped, i.e., the while loop condition in Algorithm 14
can be replaced by:

while (i, < red.size() and n;, > 0) or (i, < blue.size() and n, > 0) or (i, <

90 CHAPTER 5. SSA DESTRUCTION
red.size() and i, < blue.size()) do

where n, (resp. my) are variables that must be implemented to count the
number of elements of the stack that come from the list Red (resp. Blue).

Finally, if a coalescing of the two sets occurs, it remains to store the two
lists as a unique ordered list (in linear time, in a similar joint traversal) and
to update the equal intersecting ancestor equal _anc_in(a) for the combined
set as the maximum (following the pre-DFS order <) of equal_anc_in(a) and
equal_anc_out(a).

5.3.3 Virtualization of ¢-nodes

If we implement the whole procedure as described in Section 5.2.2, we start
by introducing many new variables a (one for each argument of a ¢-function,
plus its result) and many copies in the block where the ¢ occurs and in its
predecessors. These variables can be immediately coalesced together, in what
we call a ¢p-node, and stored in a congruence class. But, in the data structures
used (interference graph, liveness information, variable name universe, parallel
copy instructions, congruence classes), they exist as data items and consume
memory and time, even if at the end, after coalescing, they may disappear.

To avoid the introduction of these initial variables and copies, the technique
is to emulate the whole process, as does Method III of Sreedhar et al.,
which introduces necessary copies on the fly, when they appear to be needed.
However, in their method, Sreedhar et al. still manipulate an interference graph
(between original variables) and, at each step, update liveness information.
Before any related copy is inserted, each argument of a ¢-function is considered
to be live-out of the predecessor block it comes from. This is too pessimistic.
Also, it is troublesome to maintain the liveness information once copies are
inserted: recall the incorrect case of a variable used on a branching operation
mentioned in Section 5.2.

Instead, we prefer to use a special location in the code, identified as a
“virtual” parallel copy, where the real copies, if any, will be placed. The
original arguments of a ¢-function are then assumed, initially, to have a “use’
in the parallel copy but are not considered as live-out along the corresponding
control flow edge. Then, the algorithm selects copies to coalesce, following
some order, either a real copy or a virtual copy. If it turns out that a virtual
copy a; — @ (resp. ay — ag) cannot be coalesced, the copy is materialized in

I

5.3. TOWARDS A MORE EFFICIENT ALGORITHM 91

the parallel copy and a (resp. af) becomes explicit in its congruence class.
This way, only copies that the first approach would finally leave uncoalesced
are introduced. The only key point to make the emulation of copy insertion
possible is that one should never have to test an interference with a variable
that is not yet materialized or coalesced. For that, ¢-nodes are treated one by
one, and all virtual copies that imply a variable of the ¢-node are considered
(either coalesced or materialized) before examining any other copies. The
weakness of this approach is that a global coalescing algorithm cannot be used
because only a partial view of the interference graph structure is available
during the algorithm. However, the algorithm can still be guided by the weight
of copies, i.e., the dynamic count associated to the block where it would be
placed if not coalesced. The rest is only a matter of accurate implementation,
in particular, it is very important to be careful on how the live ranges of
variables are updated, following the ¢-function semantics.

5.3.4 Results in terms of speed and memory footprint

To measure the potential of our different contributions, in terms of speed-up
and memory footprint reduction, we implemented a generic SSA destruction
pass that enables us to evaluate different combinations. We selected the
following;:

Us I Simple coalescing without virtualization. Different techniques for check-
ing interferences and liveness are available.

Sreedhar III Native implementation of Method III of Sreedhar et al. com-
plemented by their SSA-based coalescing for non ¢-related copies. Both
use an interference graph with a bit-matrix and liveness information
with ordered sets.

Us III Our implementation of ¢-nodes coalescing with virtualization followed
by coalescing for non ¢-related copies. This implementation is generic
enough to support various options: with parallel or sequential copies,
with or without an interference graph, with or without live sets. Hence,
its implementation is less tuned than Sreedhar III.

By default, Us III and Us I use an interference graph and classical liveness
information. The options are:

92 CHAPTER 5. SSA DESTRUCTION

InterCheck No interference graph: intersections are checked using a domi-
nance test and liveness information as in [13].

InterCheck+LiveCheck No interference graph and no live-in/live-out sets:
intersections are checked with the fast liveness checking algorithm of [6].
This algorithm, an earlier and more complex variant of the algorithm
from 3 trades a faster construction time of the needed data structures
for a slower query time.

Linear+InterCheck—+LiveCheck In addition, the linear intersection check
is used instead of the quadratic algorithm.

When an interference graph, liveness sets, or live-check sets are used,
timings include their construction. Figure 5.4 shows the timings for those
different variants versus Sreedhar III as a baseline. As one could expect,
InterCheck always slows down the execution, while LiveCheck and Linear
always fasten the execution with a significant ratio. A very interesting result
is that the simple SSA-based coalescing algorithm without any virtualization
is as fast as the complex algorithm with virtualization. Indeed, when using
Linear+InterCheck-+LiveCheck, adding first all copies and corresponding
variables before coalescing them, do not have the negative impact measured
by Sreedhar et al. any longer.

Figure 5.5 shows the memory footprint used for interference and liveness
information.

Interference graph is stored using a half-size bit-matrix. Measured pro-
vides the measured footprint from the statistics provided by our memory
allocator. In Sreedhar III or Us III, variables are added incremen-
tally so the bit-matrix grows dynamically. This leads to a memory
footprint slightly higher than for a perfect memory. The behaviour of
such a perfect memory is evaluated in Evaluated using the formula

[%&blm x #variables/2.

Liveness sets are stored as ordered sets. Measured provides the measured
footprint of the livesets, without counting those used in liveness con-
struction. As for the interference graph, livesets are modified by
Sreedhar III or Us III. But since the number of simultaneous live
variables do not change, their size remain roughly the same. Because
the use of ordered sets instead of bit-sets is arguable, we evaluated for

5.3. TOWARDS A MORE EFFICIENT ALGORITHM 93

[Sreedhar Il W usii [J Us Ill + InterCheck
[J Us Ill + InterCheck + LiveCheck M Us Ill + Linear + InterCheck + LiveCheck [Us |
B Us | + Linear + InterCheck + LiveCheck

1.6

1.4

1.2

0.8

0.6

0.4

0.2 -

Figure 5.4: Performance results in terms of speed (time to go out of SSA).

a perfect memory the corresponding footprint of live-sets by counting
the size of each livesets. For bit-sets, we evaluated using the formula

(%ablesw x #basicblocks x 2.

Live check uses 2 bit-sets per basic block. It uses also a few other sets
during construction. Those sets are measured in the memory footprint.

A perfect memory is evaluated using the formula [—#basigbloch X

#basicblock x 2

The results show that the main gain comes from the removal of the
interference graph. We should notice that our liveness construction designed
for speed but not for memory consumed a huge amount of memory. That
is the reason why we removed it from the statistics. We would like to point
out that in practice the memory usage for liveness construction is difficult
to optimize and might lead to an important part of the memory footprint in
practice.

94 CHAPTER 5. SSA DESTRUCTION

1.2
1 -
0.8
0.6
0.4
0.2
0 -
Measured Evaluated (Ordered sets) Evaluated (Bit sets)
1.2
1 -
0.8
[Sreedhar IlI
M us i
[J Us Il + InterCheck
0.6 [J Us Il + InterCheck + LiveCheck
B Us Ill + Linear + InterCheck + LiveCheck
dusi
0.4 - Il Us | + Linear + InterCheck + LiveCheck
0.2
0 -
Measured Evaluated (Ordered sets) Evaluated (Bit sets)

Figure 5.5: Performance results in terms of memory footprint (maximum and
total).

5.4 Conclusion

In this chapter we have revisited the SSA destruction process in order to
ensure its correctness, the quality of the generated code (i.e. minimize the
number of new copies), and the speed of the algorithms. While previous
work from Sreedhar et al. had already fixed the correctness issues, its most
advanced method (Method III) is generally seen as hard to implement. The
technique proposed by Budimli¢ et al. is geared towards speed, with the help
of fast interference of SSA live-ranges, but it is difficult to implement correctly
as well.

5.4. CONCLUSION 95

We reformulated the SSA destruction problem as an aggressive coalescing
problem on CSSA, the transformed SSA resulting from Method 1 of Shreedar
et al. Our experiments show that the refining a live-range intersection test
with SSA value gives results as good as the more complex approach of Shreedar
et al.

Then, we generalized the idea of dominance forests of Budimli¢ et al.,
first to enable interference checking between two congruence classes, then
to integrate the check for equal values. In addition, we proposed a much
simpler implementation which does not explicitly create the dominance forest.
The reduced number of SSA variable intersection tests that results from this
technique allows use to use a live-check approach, and avoid construction the
live-sets.

96

CHAPTER 5. SSA DESTRUCTION

Chapter 6

Conclusion

In this thesis we presented three main contributions around liveness, static
single information, and SSA destruction.

6.1 Liveness

First, in chapter 3, we presented a novel way to build the live-sets associated
with a basic block for variables under SSA form. Our technique based on
the loop property bounds the number of time each basic block is visited,
there is only two passes compared to the more classic data-flow algorithm
which usually requires as many iteration as the depth of the loop forest of
the control flow graph.

More interestingly we presented a different way to look at the liveness
problem, instead of asking the question "what are the live variables as the
start of the basic block?” (live-set) we instead ask ”is the variable live at this
program point?” (live-check). As we have shown, there exists an algorithm
to answer this question which requires a much lighter pre-computed data
structures than the live-set problem. But while the pre-computation is much
faster and requires less memory, the drawback is that each query is more
complex than a simple lookup in a set, the loop nesting forest needs to be
inspected and reachability is tested for each use. This means that the runtime
gain will depend on the number of queries. In practice, this threshold is
usually favorable, for example the SSA destruction (see chapter 5), can reduce
its runtime cost by using the liveness-query approach.

From an engineering point of view, the algorithm is interesting, as the

97

98 CHAPTER 6. CONCLUSION

pre-computed data structures only depend on the shape of the control flow
graph. This means that even if the code is modified, as long as it does not
change the shape of the CFG, no pre-computation is needed. This is an
advantage compared to the classical live-set approach, where a change of the
code can trigger some tedious update of the live-sets.

Our final contribution for this chapter is a simple and precise way to look
at interference. As shown by Chaitin et al., the problem of interference is
not only a problem of intersection of live-ranges. The value of the variables
themselves matters as well. Fortunately, the use of the SSA form, with its
unique definition for every variable vastly simplifies the analysis of equalities
of variables. This approach is also used in our SSA destruction algorithm
from chapter 5.

6.2 Static Single Information form

Then in chapter 4, we explored an SSA variant, the static single information
form. As the various definitions were inconsistent, we clarified them and
explained their differences. We show that the original SSI form from Ananian
(strong SSI) differ from the definition given by Singer (weak SSI form), as
they do not split the live-range in the same way when the live-range of a
variable at a loop exit point.

Even if the two form differ, we show that for both of them, the intersection
graph of the live-ranges of the variables under SSI form is an interval graph.
But our result is in fact even stronger, as our proof is constructive, we give
an order of the control flow graph, depending only on the CFG, not on the
variables themselves, such that every live-range form a consecutive interval.

Finally we explored the implication for liveness analysis of the result. For
example, this means that the liveness can be stored in a very sparse way:
only the start and end of the interval are required.

6.3 SSA destruction

Finally in chapter 5, we revisited the SSA destruction. Our approach simplifies
the previous techniques, we first transform the code into CSSA form, adding
copies as needed. In a second time, a classical aggressive coalescing is used to
remove the useless copies. The simplicity of the approach allows us to easily

6.4. PERSPECTIVES 99

prove the correctness of the algorithm, which was not the case of the previous
work in the area.

We then extend the work from chapter 3, using the notion of interference
with values to reach remove as many useless copies as possible during the
coalescing phase. This leads us to a generated code quality as good as previous
more complex approaches.

Still using the work from chapter 3, in particular the liveness checking
approach, we design fast algorithms for the whole approach. In particular,
we present an fast algorithm to check interference between sets of variables,
using the dominance property from SSA form to avoid useless tests, and
using the single definition property to check for equality of values (refined
interference test). This approach avoids building the liveness sets, which
makes our algorithm faster.

6.4 Perspectives

We already have some work in progress, the first is related to SSI form. The
motivation behind the SSI form was a simplification of some optimizations and
analyses: the live-range splitting tries to ensure that some class of properties
is valid all along every different live-range. This means that the information
can be attached to the variable instead of using a more complex scheme, as
would be the case if it differed in different parts of the live-range.

But the splitting done by SSI is only useful for a very small class of
information, what is needed is a complete taxonomy of various analyses and
optimizations. For every algorithm, we should try to determine if we can
classify the information and then find out if a particular live-range splitting
is suitable. We hope this work will be useful and will clarify and help people
decide which variant of SSA they want to use.

Our other project is a fast register allocator based on SSA form. We
can use the properties of SSA, processing the variables while following the
dominance tree (in order to always encounter the definitions before every
use), and coloring every variable as we encounter them. In order to make the
algorithm fast and suitable for just-in-time compilers, we pick a global color
for every variable, and re-color locally (inside a basic block) as needed.

Since we make a better use of the SSA properties (live-ranges are sub-
tree of the dominance tree), we believe we can achieve better results than

100 CHAPTER 6. CONCLUSION

a more classic linear scan approach, where interval have holes in them.
Furthermore, our approach should prove very simple and lead to a straight-
forward implementation.

Bibliography

1]

B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of vari-
ables in programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’88), pages
1-11. ACM, 1988.

C. Scott Ananian. The Static Single Information Form. Technical Report
MIT-LCS-TR-801, Laboratory for Computer Science, Massachusetts
Institute of Technology, September 1999.

Andrew W. Appel and Jens Palsberg. Modern Compiler Implementation
in Java. Cambridge University Press, second edition, 2002.

M. Bender and M. Farach-Colton. The LCA problem revisited. LATIN
2000: Theoretical Informatics, pages 88-94.

Rastislav Bodik, Rajiv Gupta, and Vivek Sarkar. ABCD: eliminating
array bounds checks on demand. In PLDI ’00: Proceedings of the
ACM SIGPLAN 2000 conference on Programming language design and
implementation, pages 321-333, New York, NY, USA, 2000. ACM.

Benoit Boissinot, Sebastian Hack, Daniel Grund, Benoit Dupont
de Dinechin, and Fabrice Rastello. Fast liveness checking for SSA-form
programs. In IEEE/ACM International Symposium on Code Generation
and Optimization (CGO’08), pages 35-44. ACM, 2008.

Florent Bouchez, Alain Darte, Christophe Guillon, and Fabrice Rastello.
Register allocation and spill complexity under SSA. Technical Report
RR2005-33, LIP, ENS-Lyon, France, August 2005.

Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity
of register coalescing. In International Symposium on Code Generation

101

102

[12]

[13]

[14]

[15]

[16]

[17]

[18]

BIBLIOGRAPHY

and Optimization (CGO’07), pages 102-114. IEEE Computer Society
Press, March 2007.

P. Briggs, K. D. Cooper, T. J. Harvey, and L. T. Simpson. Practical
improvements to the construction and destruction of static single as-
signment form. Software — Practice and Experience, 28(8):859-881, July
1998.

Preston Briggs, Keith D. Cooper, and L. Taylor Simpson. Value num-
bering. Software — Practice and Experience, 27(6):701-724, 1997.

Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to
graph coloring register allocation. ACM Transactions on Programming
Languages and Systems, 16(3):428-455, 1994.

B.Rosen, M.Wegman, and K.Zadeck. Global value numbers and redun-
dant computations. In POPL, pages 12 — 27, 1988.

Zoran Budimli¢, Keith D. Cooper, Timothy J. Harvey, Ken Kennedy,
Timothy S. Oberg, and Steven W. Reeves. Fast copy coalescing and
live-range identification. In ACM SIGPLAN International Conference on
Programming Language Design and Implementation (PLDI’02), pages
25-32. ACM Press, June 2002.

G. J. Chaitin. Register allocation & spilling via graph coloring. In
Proceedings of the 1982 SIGPLAN symposium on Compiler construction,
pages 98-101, 1982.

Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins, and Peter W. Markstein. Register allocation via
coloring. Computer Languages, 6:47-57, January 1981.

K. D. Cooper and L. Torczon. Engineering a Compiler. Morgan Kauf-
mann, 2004.

Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy. Iterative Data-
Flow Analysis, Revisited. Technical Report TR04-100, Rice University,
2002.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment form

BIBLIOGRAPHY 103

[21]

22]

23]

[26]

[27]

and the control dependence graph. ACM Transactions on Programming
Languages and Systems, 13(4):451 — 490, 1991.

Benoit Dupont de Dinechin, cois de Ferriere Fran Christophe Guillon,
and Arthur Stoutchinin. Code generator optimizations for the ST120
DSP-MCU core. In International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES’00), pages 93 — 103, 2000.

Lal George and Andrew W. Appel. Iterated register coalescing. ACM
Transactions on Programming Languages and Systems, 18(3), May 1996.

Paul Havlak. Nesting of Reducible and Irreducible Loops. ACM Trans-
actions on Programming Languages and Systems, 19(4):557-567, 1997.

Richard Johnson, David Pearson, and Keshav Pingali. The program
structure tree: Computing control regions in linear time. ACM SIGPLAN
Notices, 29(6):171-185, 1994.

Richard Johnson and Keshav Pingali. Dependence-based program analy-
sis. In PLDI ’93: Proceedings of the ACM SIGPLAN 1993 conference
on Programming language design and implementation, pages 78-89, New

York, NY, USA, 1993. ACM.

J.B. Kam and J.D. Ullman. Global data flow analysis and iterative
algorithms. Journal of the ACM (JACM), 23(1):158-171, 1976.

Allen Leung and Lal George. Static single assignment form for machine
code. In SIGPLAN Conference on Programming Language Design and
Implementation, pages 204-214, 1999.

Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation.
ACM Transactions on Programming Languages and Systems, 21(5):895—
913, 1999.

G. Ramalingam. On loops, dominators, and dominance frontiers. ACM
Transactions on Programming Languages and Systems, 24(5):455-490,
2002.

Fabrice Rastello, Francois de Ferriere, and Christophe Guillon. Optimiz-
ing translation out of SSA using renaming constraints. In International
Symposium on Code Generation and Optimization (CGO’04), pages
265-278. IEEE Computer Society Press, 2004.

104 BIBLIOGRAPHY

[29] Jeremy Singer. Static Program Analysis Based on Virtual Register Re-
naming. Technical Report UCAM-CL-TR~660, University of Cambridge,
Computer Laboratory, February 2006.

[30] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A generalized
algorithm for graph-coloring register allocation. In ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation (PLDI’04), pages 277-288. ACM, 2004.

[31] Vugranam C. Sreedhar, Roy Dz-Ching Ju, David M. Gillies, and Vatsa
Santhanam. Translating out of static single assignment form. In Static
Analysis Symposium (SAS’99), pages 194 — 204, Ttaly, 1999.

[32] Michael Weiss. The transitive closure of control dependence: the iterated
join. ACM Lett. Program. Lang. Syst., 1(2):178-190, 1992.

[33] M. Wolfe. J+=J. ACM Sigplan Notices, 29(7):53, 1994.

